4.6 Article

Arginine deprivation induces endoplasmic reticulum stress in human solid cancer cells

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biocel.2015.10.027

Keywords

Arginine deprivation; ER stress; Canavanine; Metabolic anticancer therapy

Funding

  1. Polish Ministry of Science and Higher Education [N303 3182 39]
  2. statutory funds to the Nencki Institute
  3. West-Ukrainian BioMedical Research Center
  4. German Academic Exchange Service (DAAD)

Ask authors/readers for more resources

Deprivation for the single amino acid arginine is a rapidly developing metabolic anticancer therapy, which allows growth control in a number of highly malignant tumors. Here we report that one of the responses of human solid cancer cells to arginine starvation is the induction of prolonged endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). Systematic study of two colorectal carcinoma HCT-116 and HT29, glioblastoma U251 MG and ovarian carcinoma SKOV3 cell lines revealed, however, that the ER stress triggered by the absence of arginine does not result in massive apoptosis despite a profound upregulation of the proapoptotic gene CHOP. Instead, Akt- and MAPK-dependent pathways were activated which may counteract proapoptotic signaling. Treatment with DMSO as a disaggregating agent or with cycloheximide to block protein synthesis reduced ER stress evoked by arginine deprivation. On the other hand, ER stress and apoptosis induction in arginine-starved cells could be critically augmented by the arginine analog of plant origin canavanine, but not by the classic ER stress inducer tunicamycin. Our data suggest that canavanine treatment applied under the lack of arginine may enhance the efficacy of arginine deprivation -based anticancer therapy. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available