4.4 Article

Anisotropy of losses in grain-oriented Fe-Si

Journal

AIP ADVANCES
Volume 11, Issue 11, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0066131

Keywords

-

Funding

  1. EMPIR program [19ENG06 HEFMAG]
  2. European Union's Horizon 2020 research and innovation program

Ask authors/readers for more resources

The energy losses of grain-oriented steel Fe-Si sheets cut in different directions can be interpreted through linear combinations of quantities measured along rolling and transverse directions. The magnetic losses are relatively independent of sample geometry and can be consistently described based on magnetization mechanisms and loss separation principles.
Comprehensive assessment of the magnetic behavior of grain-oriented steel (GO) Fe-Si sheets, going beyond the conventional characterization at power frequencies along the rolling direction (RD), can be the source of much needed information for the optimal design of transformers and efficient rotating machines. However, the quasi-monocrystal character of the material is conducive, besides an obviously strong anisotropic response, to a dependence of the measured properties on the sample geometry whenever the field is applied along a direction different from the rolling and the transverse (TD) directions. In this work, we show that the energy losses, measured from 1 to 300 Hz on GO sheets cut along directions ranging from 0 degrees to 90 degrees with respect to RD, can be interpreted in terms of linear composition of the same quantities measured along RD and TD. This feature, which applies to both the DC and AC properties, resides on the sample geometry-independent character of the RD and TD magnetization and on the loss separation principle. This amounts to state that, as substantiated by magneto-optical observations, the very same domain wall mechanisms making the magnetization to evolve in the RD and TD sheets, respectively, independently combine and operate in due proportions in all the other cases. By relying on these concepts, which overcome the limitations inherent to the semi-empirical models of the literature, we can consistently describe the magnetic losses as a function of cutting angle and stacking fashion of GO strips at different peak polarization levels and different frequencies. (c) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0066131

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available