4.7 Article

Development of a new poly-ε-caprolactone with low melting point for creating a thermoset mask used in radiation therapy

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-00005-2

Keywords

-

Funding

  1. JSPS KAKENHI [JP19H00439, JP20H01105]
  2. Children's Cancer Association of Japan

Ask authors/readers for more resources

The newly developed PCL material 4b45/2b20 has a low melting point and high deformation ability, meeting clinically acceptable standards. Compared to commercially available masks, it has a lower elastic modulus and higher elongation at break.
This study aimed to develop a poly-epsilon-caprolactone (PCL) material that has a low melting point while maintaining the deformation ability. The new PCL (abbreviated as 4b45/2b20) was fabricated by mixing two types of PCL with different molecular weights, numbers of branches, and physical properties. To investigate the melting point, crystallization temperature, elastic modulus, and elongation at break for 4b45/2b20 and three commercially available masks, differential scanning calorimetry and tensile tests were performed. The melting point of 4b45/2b20 was 46.0 degrees C, and that of the commercially available masks was approximately 56.0 degrees C (55.7 degrees C-56.5 degrees C). The elastic modulus at 60 degrees C of 4b45/2b20 was significantly lower than the commercially available masks (1.1 +/- 0.3 MPa and 46.3 +/- 5.4 MPa, p = 0.0357). In addition, the elongation at break of 4b45/2b20 were significantly larger than the commercially available masks (275.2 +/- 25.0% and 216.0 +/- 15.2%, p = 0.0347). The crystallization temperature of 4b45/2b20 (22.1 degrees C) was clinically acceptable and no significant difference was found in the elastic modulus at 23 degrees C (253.7 +/- 24.3 MPa and 282.0 +/- 44.3 MPa, p = 0.4). As a shape memory-based thermoset material, 4b45/2b20 has a low melting point and large deformation ability. In addition, the crystallization temperature and strength are within the clinically acceptable standards. Because masks made using the new PCL material are formed with less pressure on the face than commercially available masks, it is a promising material for making a radiotherapy mask that can reduce the burden on patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available