4.7 Article

Ameliorative effect of curcumin and zinc oxide nanoparticles on multiple mechanisms in obese rats with induced type 2 diabetes

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-00108-w

Keywords

-

Ask authors/readers for more resources

In this study, CurNPs and ZnONPs were found to be effective therapeutic adjuvants against T2DM complications, delaying progression by activating AKT pathway and down-regulating MAPK pathway. The findings suggest the potential application of nanoparticles with low toxicity in T2DM treatment.
The present study was carried out to investigate the therapeutic effect of synthesized naturally compounds, curcumin nanoparticles (CurNPs) and metal oxide, zinc oxide nanoparticles (ZnONPs) on a high-fat diet (HFD)/streptozotocin (STZ)-induced hepatic and pancreatic pathophysiology in type 2 diabetes mellitus (T2DM) via measuring AKT pathway and MAPK pathway. T2DM rats were intraperitoneally injected with a low dose of 35 mg/kg STZ after being fed by HFD for 8 weeks. Then the rats have orally received treatments for 6 weeks. HFD/STZ-induced hepatic inflammation, reflected by increased phosphorylation of p38-MAPK pathway's molecules, was significantly decreased after nanoparticle supplementation. In addition, both nanoparticles significantly alleviated the decreased phosphorylation of AKT pathway. Further, administration of ZnONPs, CurNPs, conventional curcumin, and ZnSO4 (zinc sulfate), as well as metformin, effectively counteracted diabetes-induced oxidative stress and inflammation in the internal hepatic and pancreatic tissues. Based on the results of the current study, ZnONPs and CurNPs could be explored as a therapeutic adjuvant against complications associated with T2DM. Both nanoparticles could effectively delay the progression of several complications by activating AKT pathway and down-regulating MAPK pathway. Our findings may provide an experimental basis for the application of nanoparticles in the treatment of T2DM with low toxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available