4.7 Article

Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-98625-1

Keywords

-

Funding

  1. NIH [R01 AR072601, P30 AR069655]
  2. Sanabit Technologies Inc

Ask authors/readers for more resources

Research demonstrates that the application of low-intensity constant electromagnetic fields can enhance bone fracture healing by improving biomechanical properties and increasing callus bone mineralization. These effects are mediated through the activation of mitochondrial oxidative phosphorylation.
Bone fracture is a growing public health burden and there is a clinical need for non-invasive therapies to aid in the fracture healing process. Previous studies have demonstrated the utility of electromagnetic (EM) fields in promoting bone repair; however, its underlying mechanism of action is unclear. Interestingly, there is a growing body of literature describing positive effects of an EM field on mitochondria. In our own work, we have previously demonstrated that differentiation of osteoprogenitors into osteoblasts involves activation of mitochondrial oxidative phosphorylation (OxPhos). Therefore, it was reasonable to propose that EM field therapy exerts bone anabolic effects via stimulation of mitochondrial OxPhos. In this study, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation. In the presence of mitochondrial inhibitor antimycin A, the osteoinductive effect was reversed, confirming that this effect was mediated via increased OxPhos activity. Using a mouse tibial bone fracture model in vivo, we show that application of a low intensity constant EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization. Overall, this study provides supporting evidence that EM field therapy promotes bone fracture repair through mitochondrial OxPhos activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available