4.7 Article

Endothelial cells are an important source of BDNF in rat skeletal muscle

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-03740-8

Keywords

-

Ask authors/readers for more resources

The study provided a comprehensive analysis of BDNF localization in rat skeletal muscle, revealing endothelial cells as an important yet unexplored source of BDNF. This endothelial BDNF expression likely explains the higher levels of BDNF in oxidative muscle compared to glycolytic muscle despite the higher expression of BDNF by type II fibers.
BDNF (brain-derived neurotrophic factor) is present in skeletal muscle, controlling muscular metabolism, strength and regeneration processes. However, there is no consensus on BDNF cellular source. Furthermore, while endothelial tissue expresses BDNF in large amount, whether endothelial cells inside muscle expressed BDNF has never been explored. The aim of the present study was to provide a comprehensive analysis of BDNF localization in rat skeletal muscle. Cellular localization of BDNF and activated Tropomyosin-related kinase B (TrkB) receptors was studied by immunohistochemical analysis on soleus (SOL) and gastrocnemius (GAS). BDNF and activated TrkB levels were also measured in muscle homogenates using Western blot analysis and/or Elisa tests. The results revealed BDNF immunostaining in all cell types examined with a prominent staining in endothelial cells and a stronger staining in type II than type I muscular fibers. Endothelial cells but not other cells displayed easily detectable activated TrkB receptor expression. Levels of BDNF and activated TrkB receptors were higher in SOL than GAS. In conclusion, endothelial cells are an important and still unexplored source of BDNF present in skeletal muscle. Endothelial BDNF expression likely explains why oxidative muscle exhibits higher BDNF levels than glycolytic muscle despite higher the BDNF expression by type II fibers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available