4.7 Article

Swim training affects Akt signaling and ameliorates loss of skeletal muscle mass in a mouse model of amyotrophic lateral sclerosis

Journal

SCIENTIFIC REPORTS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-00319-1

Keywords

-

Funding

  1. National Science Centre, Poland [DEC-2013/09/NZ7/02538]
  2. Polish Ministry of Science and Higher Education [DSRiK/2019]
  3. Polish National Science Centre [UMO-2014/15/B/NZ1/00490]

Ask authors/readers for more resources

The study found that swim training can reverse muscle atrophy in ALS mice, shedding light on potential practical implications for combating muscle wasting diseases related to ALS.
We tested the hypothesis that swim training reverses the impairment of Akt/FOXO3a signaling, ameliorating muscle atrophy in ALS mice. Transgenic male mice B6SJL-Tg (SOD1(G93A)) 1Gur/J were used as the ALS model (n = 35), with wild-type B6SJL (WT) mice as controls (n = 7). ALS mice were analyzed before ALS onset, at ALS onset, and at terminal ALS. Levels of insulin/Akt signaling pathway proteins were determined, and the body and tibialis anterior muscle mass and plasma creatine kinase. Significantly increased levels of FOXO3a in ALS groups (from about 13 to 21-fold) compared to WT mice were observed. MuRF1 levels in the ONSET untrained group (12.0 +/- 1.7 AU) were significantly higher than in WT mice (1.12 +/- 0.2 AU) and in the BEFORE ALS group (3.7 +/- 0.9 AU). This was associated with body mass and skeletal muscle mass reduction. Swim training significantly ameliorated the reduction of skeletal muscle mass in both TERMINAL groups (p < 0.001) and partially reversed changes in the levels of Akt signaling pathway proteins. These findings shed light on the swimming-induced attenuation of skeletal muscle atrophy in ALS with possible practical implications for anti-cachexia approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available