4.7 Article

Natural bio-convective flow of Maxwell nanofluid over an exponentially stretching surface with slip effect and convective boundary condition

Journal

SCIENTIFIC REPORTS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-04948-y

Keywords

-

Funding

  1. United Arab Emirates University, Al Ain, UAE [12S086]
  2. Natural Science Foundation of Anhui Province [1908085QA09]
  3. University Natural Science Research Project of Anhui Province [KJ2019A0591, KJ2020ZD008]

Ask authors/readers for more resources

This article mainly focuses on the influence of chemical reaction slip condition on the unsteady three-dimensional Maxwell bio-convective nanomaterial liquid flow towards an exponentially expanding surface. The study examines the changes in temperature, velocity, microorganism, and concentration field through numerical calculations and graphical evaluation. The results show that the involvement of unsteadiness parameter restricts the transition from laminar to turbulent flow, while the velocity slip parameter has a decreasing effect on velocity components.
The under-consideration article mainly focuses an unsteady three-dimensional Maxwell bio-convective nanomaterial liquid flow towards an exponentially expanding surface with the influence of chemical reaction slip condition. The feature of heat transport is achieving in the existenceof convective boundary condition and variable thermal conductivity. With the help of similarity variables, the flow form of equations is turned into a nonlinear form of coupled ODEs. The numerical solutions are calculated by adopting bvp4c function of MATLAB. Impact of distinct characteristics on the temperature, velocity microorganism and concentration field is graphically evaluated. Moreover, physical quantities are observed via graphs and tabulated data in details. It has been seen by the observation that the involvement of unsteadiness parameter restricts the change of laminar to turbulent flow. Further, for increasing velocity slip parameter velocity component in both directions shows lessening behavior. The Nusselt number exhibits diminishing behavior for larger values of Deborah number, and it shows the opposite behavior for larger values of convective parameter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available