4.6 Article

Investigation on droplet momentum in VPPA-GMAW hybrid welding of aluminum alloys

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-016-8381-2

Keywords

Variable polarity plasma arc-gas metal arc welding; Droplet momentum; Droplet transfer; T test; Aluminum alloys

Funding

  1. National Science Foundation of China [51365032]

Ask authors/readers for more resources

Variable polarity plasma arc-gas metal arc welding (VPPA-GMAW) is a superior technology for welding thick plates of high-strength aluminum alloys. It integrates the advantages of energy focusing and high penetration depth in VPPA welding, and those of high welding efficiency and wide range of technological parameters in GMAW process. In this work, we investigated the droplet momentum in paraxial VPPA-GMAW hybrid welding of 7A52 aluminum alloys, and the technological parameters of welding process was also optimized. The images of droplet transfer were captured by high-speed camera, while the droplet speeds and sizes were statistically analyzed by t tests of independent samples. The results showed that the speeds of droplet arriving at the weld pool were significantly between GMAW and VPPA-GMAW processes, and the droplet speed increases with increasing plasma currents within a certain range. Meanwhile, the droplet momentum in VPPA-GMAW process is larger than that in conventional GMAW process. We also found that as the droplet momentum increased, the depression of weld pool grew more obvious and greatly facilitated the deep-penetration welding. In VPPA-GMAW process, it became more and more easier for the droplet to fall off the wire when the electromagnetic force gradually increased during pulse period. Droplet movement through the arc zone was further accelerated since the central pressure of arc column increased during base period. This research can provide some theoretical support for thick plate welding of high-strength aluminum alloys and help for deeper understanding of the hybrid arc coupling mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available