4.7 Article

Role of Epigallocatechin Gallate in Glucose, Lipid, and Protein Metabolism and L-Theanine in the Metabolism-Regulatory Effects of Epigallocatechin Gallate

Journal

NUTRIENTS
Volume 13, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/nu13114120

Keywords

epigallocatechin gallate; L-theanine; AMP-activated protein kinase pathway; insulin pathway; nutrient metabolism

Funding

  1. National Natural Science Foundation of China [31871804]
  2. key R&D program of Hunan Province [2020NK2030, 2021NK2016]

Ask authors/readers for more resources

The study found that EGCG can regulate nutrient metabolism in rats by activating the AMPK and insulin pathways, while LTA cooperates with EGCG to promote glycogen metabolism and suppress the effects of EGCG on fatty acid and protein synthesis.
Epigallocatechin gallate (EGCG) and L-theanine (LTA) are important bioactive components in tea that have shown promising effects on nutrient metabolism. However, whether EGCG alone or combined with LTA can regulate the glucose, lipid, and protein metabolism of healthy rats remains unclear. Therefore, we treated healthy rats with EGCG or the combination of EGCG and LTA (EGCG+LTA) to investigate the effects of EGCG on nutrient metabolism and the role of LTA in the metabolism-regulatory effects of EGCG. The results showed that compared with the control group, EGCG activated insulin and AMP-activated protein kinase (AMPK) signals, thus regulating glucose, lipid, and protein metabolism. Compared with EGCG, EGCG+LTA enhanced hepatic and muscle glycogen levels and suppressed phosphorylation of AMPK, glycogen synthase 2, mammalian target of rapamycin, and ribosomal protein S6 kinase. In addition, EGCG+LTA inhibited the expression of liver kinase B1, insulin receptor and insulin receptor substrate, and promoted the phosphorylation level of acetyl-CoA carboxylase. Furthermore, both EGCG and EGCG+LTA were harmless for young rats. In conclusion, EGCG activated AMPK and insulin pathways, thereby promoting glycolysis, glycogen, and protein synthesis and inhibiting fatty acid (FA) and cholesterol synthesis. However, LTA cooperated with EGCG to promote glycogen metabolism and suppressed the effect EGCG on FA and protein synthesis via AMPK signals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available