4.6 Article

Corrosion Resistance Mechanism of Mica-Graphene/Epoxy Composite Coating in CO2-Cl- System

Journal

MATERIALS
Volume 15, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/ma15031194

Keywords

epoxy resin; the coating; corrosion resistance; graphene; mica

Funding

  1. National Natural Science Foundation of China [51974245, 21808182]
  2. Xi'an Science and Technology Planning Project [2020KJRC0097, 2020KJRC0098]
  3. Youth Innovation Team of Shaanxi University

Ask authors/readers for more resources

The working environment for tubing in oil and gas fields is becoming more serious due to the exploration of unconventional oil and gas resources, leading to the increasing need for a protective internal coating to be used in tubing. A new mica-graphene/epoxy composite coating with different graphene contents (0.0, 0.2, 0.5, 0.7, and 1.0 wt.%) was prepared to improve the tubing resistance to a corrosive medium. The results showed that the addition of a certain amount of graphene into the mica/epoxy coating significantly improved the corrosion resistance of the composite coating, with the coating containing 0.7 wt.% graphene exhibiting the best performance.
The working environment for tubing in oil and gas fields is becoming more and more serious due to the exploration of unconventional oil and gas resources, leading to the increasing need for a protective internal coating to be used in tubing. Therefore, a new mica-graphene/epoxy composite coating with different graphene contents (0.0, 0.2, 0.5, 0.7, and 1.0 wt.%) was prepared to improve the tubing resistance to a corrosive medium, an autoclave was used to simulate the working environment, and an electrochemical workstation assisted by three-electrodes was used to study the electrochemical characteristics of the coating. The results showed that the addition of a certain amount of graphene into the mica/epoxy coating significantly improved the corrosion resistance of the composite coating, and when the graphene content increased, the corrosion resistance of the mica/epoxy coating first increased and then decreased when the corrosion current density of a 35 wt.% 800# mica/epoxy coating with a 0.7 wt.% graphene content was the lowest (7.11 x 10(-13) A.cm(-2)), the corrosion potential was the highest (292 mV), the polarization resistance was the largest (3.463 x 10(9) Omega.cm(2)), and the corrosion resistance was improved by 89.3% compared to the coating without graphene. Furthermore, the adhesion of the coating with 0.7 wt.% graphene was also the largest (8.81 MPa, increased by 3.4%) and had the smallest diffusion coefficient (1.566 x 10(7) cm(2).s(-1), decreased by 76.1%), and the thermal stability improved by 18.6%. Finally, the corrosion resistance mechanism of the composite coating with different graphene contents at different soaking times was revealed based on the electrochemistry and morphology characteristics other than water absorption and contact angle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available