4.6 Article

Abrasive Wear, Scuffing and Rolling Contact Fatigue of DLC-Coated 18CrNiMo7-6 Steel Lubricated by a Pure and Contaminated Gear Oil

Journal

MATERIALS
Volume 14, Issue 22, Pages -

Publisher

MDPI
DOI: 10.3390/ma14227086

Keywords

DLC coating; abrasive wear; scuffing; pitting; contaminated oil

Funding

  1. National Centre for Research and Development [POIR.04.01.04-00-0064/15]

Ask authors/readers for more resources

The study suggests that to reduce abrasion, scuffing, and pitting of gears in extreme mining conveyor conditions, the deposition of W-DLC/CrN coating should be considered, as it also provides good protection when the lubricating oil is contaminated.
Due to extreme working conditions of mining conveyors, which contaminate gear oil with solid particles, their transmissions are exposed to intensive abrasion, scuffing, and even rolling contact fatigue (pitting). These effects shorten gear life. To prevent their occurrence, a wear-resistant coating can be deposited on gear teeth. The resistance to abrasive wear, scuffing, and pitting was investigated and reported in the article. Simple, model specimens were used. Abrasive wear and scuffing were tested using a pin-and-vee-block tribosystem in sliding contact. A cone-three-ball rolling tribosystem was employed to test pitting. The material of the test specimens (pins, vee blocks, cones) was 18CrNiMo7-6 case-hardened steel. Two types of DLC (Diamond-like Coatings) coatings were tested, W-DLC and W-DLC/CrN. The vee blocks and cones were coated. Two industrial gear oils were selected to lubricate the specimens: one with a mineral and one with a synthetic PAO (polyalphaolephine) base, as pure oil or contaminated with solid particles from a coal mine. The results show that, to minimize the tendency to abrasion, scuffing, and pitting of specimens made of 18CrNiMo7-6 steel, the W-DLC/CrN coating should be deposited. This coating also gives very good protection when the lubricating oil is contaminated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available