4.6 Article

Experimental Research of Fibrous Materials for Two-Stage Filtration of the Intake Air of Internal Combustion Engines

Journal

MATERIALS
Volume 14, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/ma14237166

Keywords

fibrous filter materials; separation efficiency and filtration performance; pressure drop; dust absorption coefficient; two-stage air filter; vehicle combustion engine

Funding

  1. Faculty of Mechanical Engineering, Military University of Technology [UGB-881/2021]

Ask authors/readers for more resources

This study analyzed the pollutant properties in intake air of internal combustion engines, discussed the impact of mineral dust particles on engine wear, and proposed the idea and necessity of using two-stage filters in dusty air conditions. Original methodology for determining dust absorption coefficient in a two-stage filtration system was presented.
Pollutant properties in intake air to internal combustion engines were analyzed. Mineral dust particles' influence on accelerated engine components' wear was discussed. Dust concentration values in the air under various operating conditions in trucks and special vehicles were presented. The idea and necessity for using two-stage filters, operating in a multi-cyclone-porous partition system for vehicles operated in dusty air conditions, are presented. Information from the literature information has been presented, showing that impurities in small grain sizes reduce fiber bed absorbency. It has been shown that such a phenomenon occurs during filter material operation, located directly behind the inertial filter (multi-cyclone), which off-road vehicles are equipped with. It results in a greater pressure drop intensity increase and a shorter proper filter operation period. It has been shown that filter material selection for the motor vehicle air filter requires knowledge of the mass of stopped dust per filtration unit area (dust absorption coefficient k(m)) determined for a given permissible resistance value Delta p(fdop). It has been shown that there is no information on absorption coefficient values for filter materials operating in a two-stage multi-cyclone-porous partition separation system. Original methodology and conditions for determining dust absorption coefficient (k(m)) of a separation partition, operating under the conditions of two-stage filtration, were presented. The following characteristics were tested: separation efficiency, filtration performance, and pressure drop characteristics of three different filtration partitions. These were A (cellulose), B (cellulose and polyester), and C (cellulose, polyester, and nanofibers layer), working individually and in a two-stage system-behind the cyclone. Granulometric dust composition dosed into the cyclone and cyclone downstream was determined. During tests, conditions corresponding to air filter's actual operating conditions, including separation speed and dust concentration in the air, were maintained. For the pressure drop values, the dust absorption coefficient (k(m)) values of three different filtration partitions (A, B, and C), working individually and in a two-stage system-behind the cyclone-were determined experimentally.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available