4.6 Article

A Numerical Study on 3D Printed Cementitious Composites Mixes Subjected to Axial Compression

Journal

MATERIALS
Volume 14, Issue 22, Pages -

Publisher

MDPI
DOI: 10.3390/ma14226882

Keywords

numerical simulations; cementitious composites; 3D printed concrete; compression structural forms

Funding

  1. Key-Area Research and Development Program of Guangdong Province, China [2021B0707030002]
  2. Key Research and Development Plan of Zhejiang, China [2021C01022]

Ask authors/readers for more resources

This study utilizes existing concrete models to simulate the performance of cementitious composites through a multi-layer approach, concluding that layer volume and position have an impact on the performance of multi-layer concrete. Significant influence of material strength differences is observed in two-layer configurations, while in three-layer configurations, the effect of layer position is minimal and volume only plays a significant role when two layers are made from the same material.
Aptly enabled by recent developments in additive manufacturing technology, the concept of functionally grading some cementitious composites to improve structural compression forms is warranted. In this work, existing concrete models available in Abaqus Finite Element (FE) packages are utilized to simulate the performance of some cementitious composites numerically and apply them to functional grading using the multi-layer approach. If yielding good agreement with the experimental results, two-layer and three-layer models case combinations are developed to study the role of layer position and volume. The optimal and sub-optimal performance of the multi-layer concrete configurations based on compressive strength and sustained strains are assessed. The results of the models suggest that layer volume and position influence the performance of multi-layer concrete. It is observed that when there exists a substantial difference in material strengths between the concrete mixes that make up the various layers of a functionally graded structure, the influence of position and of material volume are significant in a two-layer configuration. In contrast, in a three-layer configuration, layer position is of minimal effect, and volume has a significant effect only if two of the three layers are made from the same material. Thus, a multilayered design approach to compression structures can significantly improve strength and strain performance. Finally, application scenarios on some structural compression forms are shown, and their future trajectory is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available