4.3 Article

Ab-initio study of the structural, optoelectronic, magnetic, hydrogen storage properties and mechanical behavior of novel combinations of hydride perovskites LiXH3 (X = Cr, Fe, Co, & Zn) for hydrogen storage applications

Journal

JOURNAL OF COMPUTATIONAL ELECTRONICS
Volume 20, Issue 6, Pages 2284-2299

Publisher

SPRINGER
DOI: 10.1007/s10825-021-01807-3

Keywords

Magnetic; DFT; Perovskites; Density of states; Hydrides

Ask authors/readers for more resources

LiXH3 (X = Cr, Fe, Co, & Zn) hydride type perovskites have been studied using density functional theory (DFT) to assess their structural, optoelectronic, magnetic, hydrogen storage, and mechanical properties, showing them to be suitable for hydrogen storage applications. The study also evaluated band structures, total density of states, lattice constants, and mechanical parameters, providing insights into the potential use of these materials in transportation for hydrogen storage. Additionally, optical properties were analyzed to understand the materials' behavior in optical applications related to hydrogen storage. This theoretical approach contributes valuable information for the future exploration of these materials.
LiXH3 (X = Cr, Fe, Co, & Zn) hydride type perovskites have been studied by applying density functional theory (DFT), and their structural, optoelectronic, magnetic, hydrogen storage, and mechanical properties have been calculated. The results show that these materials are synthesizable for hydrogen storage applications. The energy band structures as well as total density of states (TDOS) and partial density of states (PDOS) unveil that LiCrH3, LiCoH3, and LiZnH3 possess metallic character, while LiFeH3 exhibits semiconducting behavior. The lattice constants are calculated by applying PBE + GGA functional which are listed as 3.4940, 3.1791, 3.6343, and 3.7132 angstrom for LiXH3 (X = Cr, Fe, Co, & Zn), respectively. In order to manage the restriction of PBE + GGA functional, the lattice constants are also calculated by applying hybrid HSE06 functional which are found to be 3.3126, 2.9675, 3.1531, and 3.4018 angstrom for LiCrH3, LiFeH3, LiCoH3, and LiZnH3, respectively. The elastic stiffness constants show that these materials are mechanically and elastically stable and are deemed suitable as transportation materials in hydrogen storage devices. Moreover, mechanical parameters such as Poisson coefficient, Cauchy pressure, melting temperature, Young, Bulk, and Shear moduli have been calculated. Dielectric constants, refractive index, optical conductivity, absorptivity, and energy loss function have been determined to seek an optical behavior of the considered perovskites for hydrogen storage applications. The present study is the first theoretical approach to the contribution for future exploration of these materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available