4.6 Article

Reproducible untargeted metabolomics workflow for exhaustive MS2 data acquisition of MS1 features

Journal

JOURNAL OF CHEMINFORMATICS
Volume 14, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13321-022-00586-8

Keywords

Metabolomics; High-resolution mass spectrometry; Reproducible research; Workflow; Data analysis; Open science

Funding

  1. National Institutes of Health/National Institute of Environmental Health Sciences [U2CES030859, P30ES023515, R21ES030882, R01ES031117]
  2. National Cancer Institute [UH2CA248974]

Ask authors/readers for more resources

This study proposes an automated and comprehensive workflow for collecting MS2 fragment ions of unknown compounds in untargeted metabolomics and non-targeted analysis. Compared with other algorithms, the proposed workflow is able to provide more annotated compounds, molecular networks, and unique MS/MS spectra.
Unknown features in untargeted metabolomics and non-targeted analysis (NTA) are identified using fragment ions from MS/MS spectra to predict the structures of the unknown compounds. The precursor ion selected for fragmentation is commonly performed using data dependent acquisition (DDA) strategies or following statistical analysis using targeted MS/MS approaches. However, the selected precursor ions from DDA only cover a biased subset of the peaks or features found in full scan data. In addition, different statistical analysis can select different precursor ions for MS/MS analysis, which make the post-hocvalidation of ions selected following a secondary analysis impossible for precursor ions selected by the original statistical method. Here we propose an automated, exhaustive, statistical model-free workflow: paired mass distance-dependent analysis (PMDDA), for reproducible untargeted mass spectrometry MS2 fragment ion collection of unknown compounds found in MS1 full scan. Our workflow first removes redundant peaks from MS1 data and then exports a list of precursor ions for pseudo-targeted MS/MS analysis on independent peaks. This workflow provides comprehensive coverage of MS2 collection on unknown compounds found in full scan analysis using aone peak for one compoundworkflow without a priori redundant peak information. We compared pseudo-spectra formation and the number of MS2 spectra linked to MS1 data using the PMDDA workflow to that obtained using CAMERA and RAMclustR algorithms. More annotated compounds, molecular networks, and unique MS/MS spectra were found using PMDDA compared with CAMERA and RAMCIustR. In addition, PMDDA can generate a preferred ion list for iterative DDA to enhance coverage of compounds when instruments support such functions. Finally, compounds with signals in both positive and negative modes can be identified by the PMDDA workflow, to further reduce redundancies. The whole workflow is fully reproducible as a docker image xcmsrocker with both the original data and the data processing template.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available