4.5 Article

Brain tumor segmentation in MRI images using nonparametric localization and enhancement methods with U-net

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11548-022-02566-7

Keywords

Brain tumor; Segmentation; MRI; Tumor localization; Tumor enhancement; U-net

Ask authors/readers for more resources

This study proposes an efficient system for the segmentation of complete brain tumors from MRI images using a deep learning architecture called U-net. The system utilizes tumor localization and enhancement methods to improve the segmentation ability. Testing on benchmark datasets shows that the proposed methods achieve high accuracy and low cost segmentation of brain tumors in MRI images.
Purpose: Segmentation is one of the critical steps in analyzing medical images since it provides meaningful information for the diagnosis, monitoring, and treatment of brain tumors. In recent years, several artificial intelligence-based systems have been developed to perform this task accurately. However, the unobtrusive or low-contrast occurrence of some tumors and similarities to healthy brain tissues make the segmentation task challenging. These yielded researchers to develop new methods for preprocessing the images and improving their segmentation abilities. Methods: This study proposes an efficient system for the segmentation of the complete brain tumors from MRI images based on tumor localization and enhancement methods with a deep learning architecture named U-net. Initially, the histogram-based nonparametric tumor localization method is applied to localize the tumorous regions and the proposed tumor enhancement method is used to modify the localized regions to increase the visual appearance of indistinct or low-contrast tumors. The resultant images are fed to the original U-net architecture to segment the complete brain tumors. Results: The performance of the proposed tumor localization and enhancement methods with the U-net is tested on benchmark datasets, BRATS 2012, BRATS 2019, and BRATS 2020, and achieved superior results as 0.94, 0.85, 0.87, 0.88 dice scores for the BRATS 2012 HGG-LGG, BRATS 2019, and BRATS 2020 datasets, respectively. Conclusion: The results and comparisons showed how the proposed methods improve the segmentation ability of the deep learning models and provide high-accuracy and low-cost segmentation of complete brain tumors in MRI images. The results might yield the implementation of the proposed methods in segmentation tasks of different medical fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available