4.6 Review

Ab initio molecular dynamics with enhanced sampling in heterogeneous catalysis

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 12, Issue 1, Pages 12-37

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1cy01329g

Keywords

-

Funding

  1. US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences
  2. US-DOE, Office of Energy Efficiency and Renewable Energy, Biotechnology Office's Consortium for Computationally Physics and Chemistry
  3. DOE [DE-AC05-76RL01830]

Ask authors/readers for more resources

Ab initio molecular dynamics simulations combined with enhanced sampling techniques are becoming widespread methods to investigate chemical phenomena in catalytic systems. These methods automatically consider finite temperature effects, anharmonicity, and collective dynamics, which significantly affect reaction free energy landscapes. In contrast, standard ab initio static approaches rely on coarse-grained descriptions of reaction potential energy surfaces to assess reaction free energies. Enhanced sampling ab initio molecular dynamics allows for first principles simulations of increasingly complex systems, such as solid/liquid catalytic interfaces.
Ab initio molecular dynamics simulations combined with enhanced sampling techniques are becoming widespread methods to investigate chemical phenomena in catalytic systems. These techniques automatically include finite temperature effects, anharmonicity, and collective dynamics in their robust description of enthalpic and entropic contributions, which can have significant impact on reaction free energy landscapes. This contrasts with standard ab initio static approaches that are based on assessing reaction free energies from various coarse-grained descriptions of the reaction potential energy surface. Enhanced sampling ab initio molecular dynamics opens the way to first principles simulations of systems of increasing complexity like solid/liquid catalytic interfaces. In this work, we aim at guiding the reader through the basis of these techniques, summarizing their fundamental theoretical and practical aspects, and reviewing the relevant literature in the field. After a brief introduction to the problem, we will illustrate the advantage of using molecular simulations to include finite temperature effects, examine the most common ab initio techniques currently in use, describe their application to solid state heterogeneous catalysts, and finally critically review the most popular enhanced sampling techniques used in computational catalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available