4.8 Article

Benzo[1,2-b:4,5-b′]difuran Based Polymer Donor for High-Efficiency (>16%) and Stable Organic Solar Cells

Related references

Note: Only part of the references are listed.
Article Chemistry, Physical

Over 17% Efficiency Binary Organic Solar Cells with Photoresponses Reaching 1000 nm Enabled by Selenophene-Fused Nonfullerene Acceptors

Feng Qi et al.

Summary: Novel NFAs were designed with enhanced absorption edge and high J(sc), leading to efficient organic solar cells with improved power conversion efficiency.

ACS ENERGY LETTERS (2021)

Article Chemistry, Physical

Naphthalenothiophene imide-based polymer exhibiting over 17% efficiency

Gongya Zhang et al.

Summary: Developing new electron-deficient monomers and modifying polymer chains with extra thiophenes have been shown to be effective strategies for improving the device performance of organic solar cells, as demonstrated by the efficient PNTB-2T-based devices with excellent reproducibility.

JOULE (2021)

Article Chemistry, Multidisciplinary

A Quinoxaline-Based D-A Copolymer Donor Achieving 17.62% Efficiency of Organic Solar Cells

Can Zhu et al.

Summary: Side-chain engineering is a crucial strategy for enhancing the power conversion efficiency of organic solar cells. In this study, two copolymers were designed and synthesized, with PBQ6 exhibiting superior performance and achieving a high efficiency of 17.62% for organic solar cells.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Surpassing 13% Efficiency for Polythiophene Organic Solar Cells Processed from Nonhalogenated Solvent

Jingyang Xiao et al.

Summary: A novel fluorinated polythiophene derivative, P4T2F-HD, is introduced to significantly improve the morphology of bulk heterojunction active layers in organic solar cells. By optimizing the film morphology and interface structure, a record power conversion efficiency of 13.65% for polythiophene-based OSCs was achieved through the use of P4T2F-HD:Y6-BO films processed from nonhalogenated solvents.

ADVANCED MATERIALS (2021)

Article Energy & Fuels

Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells

Chao Li et al.

Summary: The molecular design of acceptor and donor molecules has significantly advanced organic photovoltaics. By introducing branched alkyl chains in non-fullerene acceptors, favorable morphology in the active layer can be achieved, leading to a certified device efficiency of 17.9%. This modification can completely alter the molecular packing behavior of non-fullerene acceptors, resulting in improved structural order and charge transport in thin films.

NATURE ENERGY (2021)

Article Chemistry, Multidisciplinary

Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy

Feng Liu et al.

Summary: A high-performance ternary solar cell utilizing a large-bandgap polymer donor and two structurally similar small-bandgap alloy acceptors is reported, achieving a power conversion efficiency of over 18%. By delicately regulating the energy levels of the alloy acceptor through varying the ratio of the two acceptors, more efficient hole transfer and exciton separation are achieved, contributing to reduced energy loss and better overall performance compared to single acceptor systems. Such a two-in-one alloy strategy shows promise in boosting the photovoltaic performance of devices.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

18.77 % Efficiency Organic Solar Cells Promoted by Aqueous Solution Processed Cobalt(II) Acetate Hole Transporting Layer

Huifeng Meng et al.

Summary: A robust hole transporting layer (HTL) was successfully processed from Cobalt(II) acetate tetrahydrate precursor by thermal annealing (TA) and UV-ozone (UVO) treatments, achieving high work function and ideal charge extraction morphology. By optimizing the processing conditions, a record PCE of 18.77% was achieved with PM6 as the polymer donor and L8-BO as the electron acceptor, outperforming PEDOT:PSS-based solar cell devices.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors

Shihao Chen et al.

Summary: The research suggests that asymmetric side-chain engineering can effectively tune the properties of non-fullerene small-molecule acceptors (NFSMAs) and improve the power conversion efficiency for binary non-fullerene polymer solar cells (NFPSCs). Introducing proper asymmetric side chains in NFSMAs can induce favorable face-on molecule orientation, enhance carrier mobilities, balance charge transport, and reduce recombination losses, leading to improved overall performance in NFPSCs.

SCIENCE CHINA-CHEMISTRY (2021)

Article Chemistry, Physical

A Thiadiazole-Based Conjugated Polymer with Ultradeep HOMO Level and Strong Electroluminescence Enables 18.6% Efficiency in Organic Solar Cell

Tao Zhang et al.

Summary: This study introduces a new thiadiazole-based conjugated polymer PB2F with a deep HOMO level, achieving high PCE in OSCs when blended with IT-4F. Furthermore, adding PB2F as a third component to PBDB-TF:BTP-eC9 blend leads to outstanding PCE, one of the highest in OSCs.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells

Xiyue Yuan et al.

Summary: A new building block, 3-cyanothiophene (CT), was reported for constructing high-performance donor polymers in organic solar cells (OSCs). The donor polymer (PBCT-2F) based on the CT unit achieved a remarkable power conversion efficiency (PCE) of 17.1% and exhibited excellent batch-to-batch reproducibility, showing great potential for industrial synthesis and large-scale manufacturing.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Materials Science, Multidisciplinary

High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy

Jiali Song et al.

Summary: The use of a solvent additive strategy with diiodomethane (DIM) instead of 1,8-diiodooctane (DIO) has been effective in reducing high voltage loss (V-loss) in organic solar cells (OSCs), leading to improved power conversion efficiency (PCE) and open-circuit voltage (V-oc). The approach has also been successfully applied to different blends, achieving high PCEs with reduced V-loss.

MATTER (2021)

Review Chemistry, Multidisciplinary

Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells

Lei Zhu et al.

Summary: The article reviews the importance of non-fullerene acceptors (NFAs) in organic solar cells (OSCs) and the key steps and influencing factors for morphology optimization. It examines the morphological characteristics and recent research progress of pi-conjugated molecular systems based on IDT and Y6, as well as n-type pi-conjugated polymers, with special attention to high-performance Y6-based NFAs. The article aims to provide useful information and guidance for morphology optimization and achieving higher efficiency devices.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Non-Fullerene Organic Solar Cells Based on Benzo[1,2-b:4,5-b′]difuran-Conjugated Polymer with 14% Efficiency

Xueshan Li et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics

Shuixing Li et al.

ADVANCED MATERIALS (2020)

Article Multidisciplinary Sciences

18% Efficiency organic solar cells

Qishi Liu et al.

SCIENCE BULLETIN (2020)

Article Chemistry, Physical

Polymer Side-Chain Variation Induces Microstructural Disparity in Nonfullerene Solar Cells

Long Ye et al.

CHEMISTRY OF MATERIALS (2019)

Editorial Material Chemistry, Multidisciplinary

Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells

Tian Xia et al.

SCIENCE CHINA-CHEMISTRY (2019)

Article Chemistry, Multidisciplinary

Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors

Jiali Song et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance

Maojie Zhang et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

Single-Junction Organic Solar Cells Based on a Novel Wide-Bandgap Polymer with Efficiency of 9.7%

Lijun Huo et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells

Yuze Lin et al.

ADVANCED MATERIALS (2015)

Article Multidisciplinary Sciences

Flexible, highly efficient all-polymer solar cells

Taesu Kim et al.

NATURE COMMUNICATIONS (2015)

Article Chemistry, Physical

A new benzo[1,2-b:4,5-b′]difuran-based copolymer for efficient polymer solar cells

Xuewen Chen et al.

JOURNAL OF MATERIALS CHEMISTRY (2012)

Article Chemistry, Multidisciplinary

Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers

Lijun Huo et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2011)

Article Chemistry, Multidisciplinary

Towards green electronic materials. alpha-Oligofurans as semiconductors

Ori Gidron et al.

CHEMICAL COMMUNICATIONS (2011)

Article Chemistry, Multidisciplinary

Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells

Samuel C. Price et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2011)

Review Chemistry, Multidisciplinary

Device physics of polymer:fullerene bulk heterojunction solar cells

Paul W. M. Blom et al.

ADVANCED MATERIALS (2007)

Article Chemistry, Multidisciplinary

High electron mobility in room-temperature discotic liquid-crystalline perylene diimides

ZS An et al.

ADVANCED MATERIALS (2005)