4.8 Article

Nanobubbles explain the large slip observed on lubricant-infused surfaces

Journal

NATURE COMMUNICATIONS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-28016-1

Keywords

-

Funding

  1. Australian Research Council [FT180100214]
  2. Costa Rican Ministry of Science and Technology
  3. Australian Government Research Training Program (RTP) Scholarship
  4. Australian Research Council [FT180100214] Funding Source: Australian Research Council

Ask authors/readers for more resources

This study reveals that lubricant-infused surfaces can effectively reduce drag in microfluidic flow. The spontaneous nucleation of surface nanobubbles leads to a significant increase in interfacial slip, a mechanism that is likely to occur on most infused surfaces.
Lubricant-infused surfaces hold promise to reduce the huge frictional drag that slows down the flow of fluids at microscales. We show that infused Teflon wrinkled surfaces induce an effective slip length 50 times larger than expected based on the presence of the lubricant alone. This effect is particularly striking as it occurs even when the infused lubricant's viscosity is several times higher than that of the flowing liquid. Crucially, the slip length increases with increasing air content in the water but is much higher than expected even in degassed and plain Milli-Q water. Imaging directly the immersed interface using a mapping technique based on atomic force microscopy meniscus force measurements reveals that the mechanism responsible for this huge slip is the nucleation of surface nanobubbles. Using a numerical model and the height and distribution of these surface nanobubbles, we can quantitatively explain the large fluid slip observed in these surfaces. Why are lubricant-infused surfaces so effective at reducing drag in microfluidic flow? Here, authors reveal that infused nanostructured Teflon wrinkles induce large interfacial slip due to the spontaneous nucleation of surface nanobubbles, a mechanism likely to occur on most rough infused surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available