4.8 Article

Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-26384-8

Keywords

-

Funding

  1. Laboratory Directed Research and Development Program (LDRD) at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]

Ask authors/readers for more resources

The integrated cooling (i-Cool) textile, designed with a unique functional structure, enhances evaporation ability and sweat evaporation cooling efficiency, while also reducing sweat consumption, showing outstanding performance in heat dissipation and perspiration management.
Perspiration evaporation plays an indispensable role in human body heat dissipation. However, conventional textiles tend to focus on sweat removal and pay little attention to the basic thermoregulation function of sweat, showing limited evaporation ability and cooling efficiency in moderate/profuse perspiration scenarios. Here, we propose an integrated cooling (i-Cool) textile with unique functional structure design for personal perspiration management. By integrating heat conductive pathways and water transport channels decently, i-Cool exhibits enhanced evaporation ability and high sweat evaporative cooling efficiency, not merely liquid sweat wicking function. In the steady-state evaporation test, compared to cotton, up to over 100% reduction in water mass gain ratio, and 3 times higher skin power density increment for every unit of sweat evaporation are demonstrated. Besides, i-Cool shows about 3 degrees C cooling effect with greatly reduced sweat consumption than cotton in the artificial sweating skin test. The practical application feasibility of i-Cool design principles is well validated based on commercial fabrics. Owing to its exceptional personal perspiration management performance, we expect the i-Cool concept can provide promising design guidelines for next-generation perspiration management textiles. To efficiently unlock the cooling power of sweat for human body remains a great challenge for next-generation textiles. Here the authors report an integrated cooling (i-Cool) textile showing high evaporation ability and sweat evaporation cooling efficiency for personal perspiration management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available