4.6 Article

Macroscopic and microscopic behaviors of granular materials under proportional strain path: a DEM study

Publisher

WILEY
DOI: 10.1002/nag.2537

Keywords

DEM; proportional strain path; diffuse failure; rolling friction; microscopic mechanism

Funding

  1. National Natural Science Foundation of China [51322905, 51579193, 51509190]
  2. China Postdoctoral Science Foundation [2015M572195]

Ask authors/readers for more resources

Under the proportional strain loading path, particle assemblies may exhibit various failure modes. Besides the strain localization, the diffuse failure may also occur under certain conditions. The diffuse failure mode corresponds to a homogeneous occurrence of failure with stress states strictly included within the plastic limit condition. This paper emphasizes the influences of the density degree and the rolling resistance under the strain path. A contact model considering rolling friction is adopted in a discrete element method analysis as an approximate means to account for the effects of particle shape. Mechanical responses indicate that loose assemblies without the rolling resistance are more vulnerable to static liquefaction. A sample with a smaller initial void ratio or larger rolling friction coefficient will reinforce the stability of the structure and reduce the likelihood of failure. For microscopic properties, the evolution of coordination numbers, contact forces, force chains and the anisotropies of the assemblies are explored and discussed. Rotational resistance helps increase the shear stress of the granular material, and the microscopic parameters indicate that the assembly has a strong anisotropy and a stable structure to resist the increasing loading. Copyright (C) 2016 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available