4.6 Article

Three-dimensional modelling of differential railway track settlement using a cycle domain constitutive model

Publisher

WILEY
DOI: 10.1002/nag.2515

Keywords

ballast; railway switch and crossing; cyclic loading; 3D finite element analysis; shakedown; differential track settlement

Ask authors/readers for more resources

A method for simulation of differential (spatially varying) track settlement in a ballasted railway track is presented. It employs a cycle domain constitutive model to determine accumulated plastic (permanent) deformation of the granular layers supporting the track. The constitutive model is adopted for both the ballast and the sub-ballast but with different parameter sets. The proposed framework can be used to predict differential track settlement accounting for heterogeneous (space-variant) track characteristics and loading conditions. Here, it is demonstrated for three-dimensional continuum modelling of a railway crossing panel subjected to a large number of axle passages. Because of the design of the crossing panel and the transient character of the impact loads on the crossing, the load transferred into the track bed is not uniform along the track, and the resulting differential settlement leads to vertical irregularities in track geometry. The spatial variation of track settlement is calculated both along the sleepers and along the rails. The influences of the number of adjacent sleepers accounted for in the model and the stiffness of the subgrade on the predicted settlement at the crossing are studied. Copyright (c) 2016 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available