4.8 Article

Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: performance and mechanisms

Journal

WATER RESEARCH
Volume 206, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117741

Keywords

Microalgal residue; Biochar-based membrane; Advanced oxidation process; Carbocatalysis; Synchronous pollutant removal

Ask authors/readers for more resources

The study developed a membrane based on microalgal biochar for the treatment of complex wastewater, demonstrating unique separation and catalytic properties. The MBCM/AOPs system showed high efficiency in removing emulsions and organic pollutants from wastewater, achieving high separation and degradation rates.
In this study, we applied a flexible strategy to manufacture a microalgal biochar-based membrane (MBCM). Due to the hierarchical surface topography on a micro-nano scale, the MBCM was found to have both underwater superoleophobic and underoil superhydrophobic properties. Combining an underoil superhydrophobic oilcontaining region (OCR) with an underwater superoleophobic water-containing region (WCR) achieved the successive filtration of multiphase emulsions. The MBCM also served as a high-performance carbocatalyst for advanced oxidation processes (AOPs), due to the N functionalities (5.08%) of the graphene-like structure. This was caused by the high-temperature pyrolysis of rich proteins and alkaline salts in the algal residue. As a result, the MBCM/AOPs system achieved greater than 99.5% emulsions separation efficiency in different emulsion mixtures, while also achieving an outstanding degradation rate (99.8%) of soluble organic contaminants (SOCs). This in-depth exploration resulted in a low-cost and green strategy for developing multifunctional membranes to treat complex wastewater. The paper explains the mechanisms used by MBCM to synchronously remove emulsions and SOCs from wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available