4.5 Article

Material studies for the recycling of abandoned, lost or otherwise discarded fishing gear (ALDFG)

Journal

WASTE MANAGEMENT & RESEARCH
Volume 40, Issue 7, Pages 1039-1046

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0734242X211052850

Keywords

ALDFG; gillnet; characterisation; recycling problems; re-use options

Ask authors/readers for more resources

This study explores the feasibility of recycling material from retrieved gillnets from the Baltic Sea, with a focus on pre-treatment to reduce mineral content. Analysis revealed various polymers and minerals in the material, with a pre-treatment process proving successful in reducing mineral content.
This study investigates the feasibility of material recycling for retrieved gillnets from the Baltic Sea collected during a campaign of the World Wildlife Fund (WWF) Germany. Fragments from the material were analysed by Fourier transform infrared (FTIR) spectroscopy revealing polyamide 6 (PA6), polypropylene (PP) and polyethylene terephthalate (PET) in net material, swim lines and sink lines, respectively. A visual examination by microscope found large quantities of minerals attached to the surface of the material as well as in knots and loops of the polymer structure. Ash tests showed that a pre-treatment of the material including sorting, shredding, density separation and washing allows to reduce the mineral content from more than 45% of the total to 1.1%. However, for a separation by density, it is important that the entangled fibres can move freely. This is a major challenge for a primary or secondary mechanical recycling because a substantial fibre length reduction is required for the small polymer fibres down to a diameter of 20 mu m. Another challenge for all kinds of recycling is the presence of lead lines in gillnets. Automated technology for removing these does not exist until now. A manual removal is indispensable to limit the level of contamination. Due to the complex pre-treatment and the elevated heavy metal concentrations also a tertiary or feedstock recycling seems not to be a possible pathway for retrieved gillnets. Yet, other options such as a primary recycling in concrete or bitumen additives or quaternary recycling via incineration may be conceivable alternatives. But there are also some arguments against these options. Better product design must be the goal to prevent plastic pollution and establish a functioning circular economy. In this context, the heavy metal contamination by abandoned, lost or otherwise discarded fishing gear (ALDFG) must be stopped.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available