4.5 Article

The interactions of ZDHHC5/GOLGA7 with SARS-CoV-2 spike (S) protein and their effects on S protein's subcellular localization, palmitoylation and pseudovirus entry

Journal

VIROLOGY JOURNAL
Volume 18, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12985-021-01722-w

Keywords

SARS-CoV-2; Spike protein; ZDHHC5; GOLGA7; APT2; Virus-host interaction

Categories

Funding

  1. National Natural Science Foundation of China [32071236]
  2. Key Science and Technology Research Projects in Key Areas of the Corps [2018AB019]
  3. 1.3.5 Project for Disciplines Excellence of West China Hospital, Sichuan University [ZYYC20005]
  4. China Postdoctoral Science Foundation [2020M683304]
  5. Sichuan Science and Technology Support Project [2021YJ0502]
  6. West China Hospital, Sichuan University [2020HXBH082]

Ask authors/readers for more resources

ZDHHC5 and GOLGA7 play important roles in SARS-CoV-2 pseudovirus entry. Knockout of these two host proteins significantly decrease the entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells, while not affecting the subcellular localization or palmitoylation of S protein. Interactions between S protein and host proteins provide insights for potential antiviral strategies.
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein determines virus entry and the palmitoylation of S protein affects virus infection. An acyltransferase complex ZDHHC5/GOGAL7 that interacts with S protein was detected by affinity purification mass spectrometry (AP-MS). However, the palmitoylated cysteine residues of S protein, the effects of ZDHHC5 or GOLGA7 knockout on S protein's subcellular localization, palmitoylation, pseudovirus entry and the enzyme for depalmitoylation of S protein are not clear. Methods The palmitoylated cysteine residues of S protein were identified by acyl-biotin exchange (ABE) assays. The interactions between S protein and host proteins were analyzed by co-immunoprecipitation (co-IP) assays. Subcellular localizations of S protein and host proteins were analyzed by fluorescence microscopy. ZDHHC5 or GOGAL7 gene was edited by CRISPR-Cas9. The entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells were analyzed by measuring the activity of Renilla luciferase. Results In this investigation, all ten cysteine residues in the endodomain of S protein were palmitoylated. The interaction of S protein with ZDHHC5 or GOLGA7 was confirmed. The interaction and colocalization of S protein with ZDHHC5 or GOLGA7 were independent of the ten cysteine residues in the endodomain of S protein. The interaction between S protein and ZDHHC5 was independent of the enzymatic activity and the PDZ-binding domain of ZDHHC5. Three cell lines HEK293T, A549 and Hela lacking ZDHHC5 or GOLGA7 were constructed. Furthermore, S proteins still interacted with one host protein in HEK293T cells lacking the other. ZDHHC5 or GOLGA7 knockout had no significant effect on S protein's subcellular localization or palmitoylation, but significantly decreased the entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells, while varying degrees of entry efficiencies may be linked to the cell types. Additionally, the S protein interacted with the depalmitoylase APT2. Conclusions ZDHHC5 and GOLGA7 played important roles in SARS-CoV-2 pseudovirus entry, but the reason why the two host proteins affected pseudovirus entry remains to be further explored. This study extends the knowledge about the interactions between SARS-CoV-2 S protein and host proteins and probably provides a reference for the corresponding antiviral methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available