4.6 Article Proceedings Paper

Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity

Journal

INTERNATIONAL BIODETERIORATION & BIODEGRADATION
Volume 113, Issue -, Pages 169-176

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ibiod.2016.04.027

Keywords

Laccase degradation; Redox mediator; Trace organic contaminant; Effluent toxicity

Ask authors/readers for more resources

This study compares the effectiveness of seven redox-mediating compounds namely, 1-hydrozybenzotriazole (HBT), N-hydroxyphthalimide (HPI), 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO), violuric acid (VA), syringaldehyde (SA), vanillin (VA), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), which follow distinct oxidation pathways, for the degradation of trace organic contaminants (TrOCs). These redox-mediators were investigated for improved degradation of four TrOCs showing resistance to degradation by crude laccase from the white-rot fungus Pleurotus ostreatus. ABTS and VA achieved the highest degradation of the phenolic compounds (i.e., oxybenzone and pentachlorophenol), whereas the non-phenolic compounds (i.e., naproxen and atrazine) were best removed using VA or HBT. This implies that the non-phenolic compounds are more effectively removed by the radical species generated by the N-OH type mediators (i.e., VA and HBT), while removal of the phenolic compounds may depend more on the stability and the redox potential of the radicals generated from the mediator, irrespective of the type. Notably, enzyme stability was greatly affected by the N-OH type mediators but it was compensated by their rapid degradation capacity. Overall, VA and HBT (N-OH type) appear to be the best mediators for enhanced degradation of the selected compounds without causing significant toxicity in the effluent. (C) 2016 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available