4.5 Article

Toxicological impact of organic ultrafine particles (UFPs) in human bronchial epithelial BEAS-2B cells at air-liquid interface

Journal

TOXICOLOGY IN VITRO
Volume 78, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tiv.2021.105258

Keywords

BEAS-2B; Air-liquid interface; miniCAST; Ultrafine particles; PAH; Toxicity

Categories

Funding

  1. ANSES (French Agency for Food, Environmental and Occupational Health and Safety) [PNREST ANSES EST/2017/1/190]
  2. Regional Council of Normandy
  3. European Union of the ERDF-ESF
  4. Laboratoire d'Excellence (LabEx) SynOrg [ANR-11-LABX-0029]
  5. ADEME (Agency for Ecological Transition)

Ask authors/readers for more resources

This study investigated the toxicological effects of ultrafine particles (UFPs) with high organic content on BEAS-2B cells at low doses. The results showed an increase in oxidative stress and induction of genes related to xenobiotic metabolism, while inflammatory gene expression decreased. These findings highlight the mechanisms by which organic UFPs induce toxic effects.
Air pollution has significant health effects worldwide, and airborne particles play a significant role in these effects. Ultrafine particles (UFPs) have an aerodynamic diameter of 0.1 mu m or less, can penetrate deep into the respiratory tree, and are more toxic due to their large specific surface area, which should adsorb organic compounds. The aim of this study is to show the toxicological effects of UFPs with high organic content at low dose on BEAS-2B cells through at air-liquid interface (ALI) exposure using a Vitrocell (R) technology and a miniCAST (Combustion Aerosol Standard) generator. In conjunction with this approach, chemical analysis of particles and gas phase was performed to evaluate the presence of polycyclic aromatic hydrocarbons (PAHs). Chemical analyses confirmed the presence of PAHs in UFPs. With this experimental setup, exposure of the BEAS-2B cells induced neither cytotoxicity nor mitochondrial dysfunction. However, an increase of oxidative stress was observed, as assessed through Nrf2, NQO1, HO-1, CuZnSOD, MnSOD, and Catalase gene expression, together with significant induction of genes related to xenobiotic metabolism CYP1A1 and CYP1B1. Negative regulation of inflammatory genes expression (IL-6 and IL-8) was present three hours after the exposition to the UFPs. Taken together, this experimental approach, using repeatable conditions, should help to clarify the mechanisms by which organic UFPs induce toxicological effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available