4.5 Article

Effect of Ordered Phases and Microstructures on the Iron Loss of 6.5 wt% Si Electrical Steel Quenched at Various Cooling Rates

Journal

STEEL RESEARCH INTERNATIONAL
Volume 93, Issue 7, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/srin.202100739

Keywords

iron losses; microstructures; ordered phases; quenching; 6; 5 wt% Si electrical steels

Funding

  1. National Natural Science Foundation of China [51804231, 52074200]
  2. Key R&D Program of Hubei Province [2020BAA027]
  3. China Scholarship Council

Ask authors/readers for more resources

In this study, the effect of cooling rates on the microstructure and ordered phases of electrical steel was investigated. It was found that cooling rates have a significant impact on the width and quantity of magnetic domains. Increased residual stress, refinement of antiphase domains, and increased domain width led to higher iron loss.
Herein, the effect of the ordered phases and microstructure of 6.5 wt% Si electrical steel recrystallized and quenched at different cooling rates on its iron loss is investigated. The varied cooling rate barely influences the grain size and the precipitation of Cu but affects the magnetic domain significantly. A higher cooling rate is associated with greater residual stress and hence, leads to an increase in the width of the magnetic domain. In terms of the ordered phases, the quantity of B2 first decreases and then increases with a rising cooling rate while the quantity of D0(3) decreases. Meanwhile, the size of B2 antiphase domains reduces, while the D0(3) antiphase domains are either too fine to be observed or absent at higher cooling rates. The increased residual stress, the refinement of B2 antiphase domains, and the associated larger pinning effect on the migration of magnetic domain walls jointly lead to higher hysteresis loss. In addition, the increased width of the magnetic domain results in a larger anomalous loss. Both effects give rise to an overall increase in the iron loss P-10/50.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available