4.6 Article

Synchronized oscillations in swarms of nematode Turbatrix aceti

Journal

SOFT MATTER
Volume 18, Issue 6, Pages -

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1sm01572a

Keywords

-

Funding

  1. NASA [80NSSC17K0771, 80NSSC21K0143]
  2. National Science Foundation [PHY-1757062, DMR-1809318]

Ask authors/readers for more resources

There is a recent surge of interest in the behavior of active particles that can align their direction of movement and synchronize their oscillations. Researchers conducted an experimental investigation on the collective motion of the nematode Turbatrix aceti and discovered their ability to synchronize body oscillations, resulting in strong fluid flows. The location and strength of this collective state can be controlled by adjusting the shape of the confining structure, offering potential for producing controllable work.
There is a recent surge of interest in the behavior of active particles that can at the same time align their direction of movement and synchronize their oscillations, known as swarmalators. While theoretical and numerical models of such systems are now abundant, no real-life examples have been shown to date. We present an experimental investigation of the collective motion of the nematode Turbatrix aceti that self-propel by body undulation. We discover that these nematodes can synchronize their body oscillations, forming striking traveling metachronal waves, which produces strong fluid flows. We uncover that the location and strength of this collective state can be controlled through the shape of the confining structure; in our case the contact angle of a droplet. This opens a way for producing controlled work such as on-demand flows or displacement of objects. We illustrate this by showing that the force generated by this state is sufficient to change the physics of evaporation of fluid droplets, by counteracting the surface-tension force, which allow us to estimate its strength. The relatively large size and ease of culture make Turbatrix aceti a promising model organism for experimental investigation of swarming and oscillating active matter capable of producing controllable work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available