4.6 Article

3D-printed bio-inspired zero Poisson's ratio graded metamaterials with high energy absorption performance

Journal

SMART MATERIALS AND STRUCTURES
Volume 31, Issue 3, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-665X/ac47d6

Keywords

zero Poisson's ratio; graded metamaterials; energy absorption; 3D printing; hyperelastic properties

Ask authors/readers for more resources

This study introduces a novel type of two-dimensional graded metamaterials with zero Poisson's ratio for energy absorption applications. Inspired by the 2D image of a DNA molecule, these metamaterials are designed with re-entrant unit cells that result in a zero Poisson's ratio behavior. The energy absorption capacity of the metamaterials is enhanced by incorporating slots and horizontal beams, taking inspiration from the DNA molecule's base pairs.
This study aims at introducing a number of two-dimensional (2D) re-entrant based zero Poisson's ratio (ZPR) graded metamaterials for energy absorption applications. The metamaterials' designs are inspired by the 2D image of a DNA molecule. This inspiration indicates how a re-entrant unit cell must be patterned along with the two orthogonal directions to obtain a ZPR behavior. Also, how much metamaterials' energy absorption capacity can be enhanced by taking slots and horizontal beams into account with the inspiration of the DNA molecule's base pairs. The ZPR metamaterials comprise multi-stiffness unit cells, so-called soft and stiff re-entrant unit cells. The variability in unit cells' stiffness is caused by the specific design of the unit cells. A finite element analysis (FEA) is employed to simulate the deformation patterns of the ZPRs. Following that, meta-structures are fabricated with 3D printing of TPU as hyperelastic materials to validate the FEA results. A good correlation is observed between FEA and experimental results. The experimental and numerical results show that due to the presence of multi-stiffness re-entrant unit cells, the deformation mechanisms and the unit cells' densifications are adjustable under quasi-static compression. Also, the structure designed based on the DNA molecule's base pairs, so-called structure F', exhibits the highest energy absorption capacity. Apart from the diversity in metamaterial unit cells' designs, the effect of multi-thickness cell walls is also evaluated. The results show that the diversity in cell wall thicknesses leads to boosting the energy absorption capacity. In this regard, the energy absorption capacity of structure 'E' enhances by up to 33% than that of its counterpart with constant cell wall thicknesses. Finally, a comparison in terms of energy absorption capacity and stability between the newly designed ZPRs, traditional ZPRs, and auxetic metamaterial is performed, approving the superiority of the newly designed ZPR metamaterials over both traditional ZPRs and auxetic metamaterials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available