4.8 Article

Electronic Regulation of ZnCo Dual-Atomic Active Sites Entrapped in 1D@2D Hierarchical N-Doped Carbon for Efficient Synergistic Catalysis of Oxygen Reduction in Zn-Air Battery

Journal

SMALL
Volume 18, Issue 14, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202107141

Keywords

bio-inspired carbon; electronic regulation; oxygen reduction; zinc-air batteries; zinc-cobalt dual-atomic sites

Funding

  1. National Natural Science Foundation of China [21805245]
  2. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory [XHT2020-003]
  3. Fundamental Research Funds for the Central Universities [WUT: 2020III029, 2020IVA100]

Ask authors/readers for more resources

In this study, ZnCo dual-atomic sites were incorporated in hierarchical N-doped carbon via a one-step bio-inspired pyrolysis. The resulting ZnCo-N-x system exhibited excellent catalytic characteristics for the ORR. The assembled Zn-air battery showed a maximum power density of 123.7 mW cm(-2) and robust stability.
Transition metal-based nitrogen-doped carbon (M-N-x-C) is considered as a promising catalyst for the oxygen reduction reaction (ORR) in clean energy storage and conversion devices. Herein, ZnCo dual-atomic sites are incorporated in hierarchical N-doped carbon (HNC), with 1D nanotubes wrapped in 2D nanosheets structure (termed as 1D@2D ZnCo-HNC), via a one-step bio-inspired pyrolysis. The feeding ratio of Zn to Co precursor and pyrolytic temperature are critically modulated to achieve well-defined morphologies of the products, endowing them with the integrated merits of nanotubes and nanosheets as efficient ORR catalysts. Benefiting from the particular structure and electronic regulation of Zn on Co, the ZnCo-N-x dual-atomic system exhibits excellent ORR catalytic characteristics with an onset potential of 1.05 V and a half-wave potential of 0.82 V. Density functional theory calculations further explain the regulating role of Zn, such that the adjusted Co in ZnCo-N-x sites significantly reduces the energy cost to ultimately facilitate the ORR. Moreover, the Zn-air battery assembled with ZnCo-HNC is capable of delivering the maximum power density of 123.7 mW cm(-2) and robust stability for 110 h (330 cycles). This method provides a promising strategy for fabricating efficient transition metal-based carbon catalysts for green energy devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available