4.8 Article

Engineering In-Plane Nickel Phosphide Heterointerfaces with Interfacial sp H-P Hybridization for Highly Efficient and Durable Hydrogen Evolution at 2 A cm-2

Related references

Note: Only part of the references are listed.
Review Materials Science, Multidisciplinary

Ni-based layered double hydroxide catalysts for oxygen evolution reaction

L. Yang et al.

Summary: This review comprehensively summarizes recent developments of Ni-based layered double hydroxides (LDHs) in oxygen evolution reaction (OER), including fabrication strategies, electrocatalyst applications, and structural modifications. It identifies obstacles hindering the practical use of Ni-based LDHs and emphasizes the need for more research in structural rational design and application in real water electrolysis techniques.

MATERIALS TODAY PHYSICS (2021)

Article Materials Science, Multidisciplinary

Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction

D. Y. Li et al.

Summary: A highly porous hydrogen-evolving electrocatalyst comprising Co2P/Ni2P nanohybrids on a conductive CoNi foam demonstrates outstanding pH-universal catalytic activities for hydrogen evolution. It shows exceptional performance in a wide pH range and can bear high current densities in neutral, alkaline, and acidic solutions, outperforming most non-noble electrocatalysts and even matching or surpassing noble Pt catalysts. This discovery may pave a new avenue for the development of robust inexpensive electrocatalysts for hydrogen production in unfavorable neutral or alkaline media.

MATERIALS TODAY PHYSICS (2021)

Article Chemistry, Physical

Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification

Yi Liu et al.

Summary: By using Se-doped phosphides inside nitrogen-doped carbon as catalysts, this study successfully improved the performance of electrocatalytic hydrogen evolution reaction in alkaline media. Experimental and theoretical calculations showed that the CoSe phase generated by Se modification facilitated faster charge transfer and optimized the rate-determining step, enhancing the reaction kinetics of the catalyst.

NANO ENERGY (2021)

Article Multidisciplinary Sciences

Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction

Jiexin Chen et al.

Summary: NiFeP/MXene materials with excellent oxygen evolution reaction (OER) performance have been successfully synthesized in this study, showing promise for efficient water splitting. By tuning the electronic structure and density, the material enhances the energy level of the catalyst surface, leading to superior OER performance.

SCIENCE BULLETIN (2021)

Review Chemistry, Multidisciplinary

Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts

Yongpeng Lei et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Materials Science, Multidisciplinary

Outstanding oxygen evolution reaction performance of nickel iron selenide/stainless steel mat for water electrolysis

S. Song et al.

MATERIALS TODAY PHYSICS (2020)

Article Materials Science, Multidisciplinary

Systematic study of the influence of iR compensation on water electrolysis

L. Yu et al.

MATERIALS TODAY PHYSICS (2020)

Article Chemistry, Multidisciplinary

Zirconium-Regulation-Induced Bifunctionality in 3D Cobalt-Iron Oxide Nanosheets for Overall Water Splitting

Liangliang Huang et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Physical

Self-supported tripod-like nickel phosphide nanowire arrays for hydrogen evolution

Yue Wang et al.

JOURNAL OF MATERIALS CHEMISTRY A (2019)

Article Chemistry, Physical

Predictive fabrication of Ni phosphide embedded in carbon nanofibers as active and stable electrocatalysts

Ji-Yong Kim et al.

JOURNAL OF MATERIALS CHEMISTRY A (2019)

Article Chemistry, Multidisciplinary

MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution

L. Guo et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Multidisciplinary Sciences

Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting

Xiujun Fan et al.

NATURE COMMUNICATIONS (2018)

Article Multidisciplinary Sciences

High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting

Fang Yu et al.

NATURE COMMUNICATIONS (2018)

Article Chemistry, Physical

Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting

Yue Wang et al.

JOURNAL OF MATERIALS CHEMISTRY A (2018)

Article Chemistry, Multidisciplinary

Interfacial Electron Transfer of Ni2P-NiP2 Polymorphs Inducing Enhanced Electrochemical Properties

Tong Liu et al.

ADVANCED MATERIALS (2018)

Article Chemistry, Physical

Fe-Ni-Mo Nitride Porous Nanotubes for Full Water Splitting and Zn-Air Batteries

Chunling Zhu et al.

ADVANCED ENERGY MATERIALS (2018)

Article Multidisciplinary Sciences

Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering

Tao Ling et al.

NATURE COMMUNICATIONS (2017)

Article Chemistry, Multidisciplinary

Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis

Fengmei Wang et al.

ADVANCED FUNCTIONAL MATERIALS (2017)

Article Chemistry, Multidisciplinary

Selenium-Enriched Nickel Selenide Nanosheets as a Robust Electrocatalyst for Hydrogen Generation

Fengmei Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Article Chemistry, Multidisciplinary

Versatile nanoporous bimetallic phosphides towards electrochemical water splitting

Yongwen Tan et al.

ENERGY & ENVIRONMENTAL SCIENCE (2016)

Article Chemistry, Multidisciplinary

Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution

Xu-Dong Wang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2016)

Review Chemistry, Multidisciplinary

Noble metal-free hydrogen evolution catalysts for water splitting

Xiaoxin Zou et al.

CHEMICAL SOCIETY REVIEWS (2015)

Article Chemistry, Physical

Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide

Miguel Caban-Acevedo et al.

NATURE MATERIALS (2015)

Article Chemistry, Multidisciplinary

CoSe2 Nanoparticles Grown on Carbon Fiber Paper: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction

Desheng Kong et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Article Chemistry, Multidisciplinary

Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0-14

Jingqi Tian et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Article Chemistry, Multidisciplinary

Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface:: The importance of ensemble effect

P Liu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2005)

Article Chemistry, Multidisciplinary

Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution

B Hinnemann et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2005)