4.7 Article

Facile synthesis of metal-organic framework-derived ZnO/CuO nanocomposites for highly sensitive and selective H2S gas sensing

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 349, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2021.130741

Keywords

Metal-organic framework; MOF-derived ZnO/CuO nanocomposites; P-n junctions; Fast sensing process; H2S gas sensing

Funding

  1. Vietnam National University, Ho Chi Minh City [TX2021-50-01]
  2. PAP program of the Korea Polar Research Institute
  3. National Research Foundation of Korea (NRF) - Korean government (MSIT) [2021R1A2C1009790]

Ask authors/readers for more resources

ZnO/CuO nanocomposites derived from a metal-organic framework showed excellent gas sensing performance on low concentrations of H2S gas, with high response, selectivity, and repeatability. This was attributed to the texture coefficients of the ZnO and CuO phase compositions, leading to the formation of a high number of p-n junctions and quantum confinement effects, as well as the lower binding energy of H2S.
ZnO/CuO nanocomposites were derived from a metal-organic framework (MOF) using a simple precipitation method. The mesoporous nature, crystallinity, and fine particle size of the synthesized ZnO/CuO nanocomposites varied with CuO amounts, affecting the gas sensing ability of different gases (H2S, CO, C6H6, and C7H8 gases). It was found that the ZnO/CuO (40 mol%) gas sensor showed the highest sensing capacity in terms of response, selectivity, and repeatability on low concentrations of H2S gas (10 ppm). The strong sensing performance, short response time (58 s) and recovery time (273 s) were explained in terms of the texture coefficients (phase percentage, crystal size, and crystallinity) of the ZnO and CuO phase compositions, resulting in the formation of a high number of p-n junctions and quantum confinement effects in the nanocomposite, as well as the lower binding energy of H2S. The fast sensing ability of a low H2S concentration highlights the practical importance of these MOF-derived ZnO/CuO nanocomposites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available