4.7 Article

Junction area dependent performance of graphene/silicon based self-powered Schottky photodiodes

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 331, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2021.112829

Keywords

Graphene; Schottky junction; Responsivity; Detectivity; Noise equivalent power; Response speed

Funding

  1. Yasar University Project Evaluation Commission (PEC) [BAP089]

Ask authors/readers for more resources

The study demonstrates that the device performance of Graphene/n-Silicon Schottky photodiodes is influenced by the junction area. The spectral response of the devices has a linear dependence on the active junction area, while the spectral responsivity and response speed exhibit opposite trends with different junction areas.
This work reports the impact of junction area on the device performance parameters of Graphene/n-Silicon (Gr/n-Si) based Schottky photodiodes. Herein, three batches of Gr/n-Si photodiode samples were produced based on various sized CVD grown monolayer graphene layers transferred on individual n-Si substrates. The fabricated devices exhibited strong Schottky diode character and had high spectral sensi-tivity at 905 nm peak wavelength. The optoelectronic measurements showed that the spectral response of Gr/n-Si Schottky photodiodes has a linear dependence on the active junction area. The sample with 20 mm(2) junction area reached a spectral response of 0.76 AW(-1), which is the highest value reported in the literature for self-powered Gr/n-Si Schottky photodiodes without the modification of graphene electrode. In contrast to their spectral responsivities, the response speed of the samples were found to be lowered as a function of the junction area. The experimental results demonstrated that the device performance of Gr/n-Si Schottky photodiodes can be modified simply by changing the size of the graphene electrode on n-Si without need of external doping of graphene layer or engineering Gr/n-Si interface. This study may serve towards the standardization of junction area for the development of high performance Gr/Si based optoelectronic devices such as solar cells and photodetectors operating in between the ultraviolet and near-infrared spectral region. (C) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available