4.7 Article

Improved mechanical properties of cast Mg alloy welds via texture weakening by differential rotation refill friction stir spot welding

Journal

SCRIPTA MATERIALIA
Volume 203, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.scriptamat.2021.114113

Keywords

Refill friction stir spot welding; Magnesium alloy; Texture; EBSD; Plastic deformation

Funding

  1. Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany)
  2. China Scholarship Council [201506220158]

Ask authors/readers for more resources

The novel process variant, differential rotation refill friction stir spot welding (DR-refill FSSW), improves lap shear strength (LSS) in welds by stimulating discontinuous dynamic recrystallization and producing a bimodal microstructure with weakened texture.
Cast magnesium alloys welds produced by refill friction stir spot welding (refill FSSW) show low lap shear strength (LSS) and constantly fail in stirred zone (SZ) shear mode. The cause is most probably related to the heavily textured microstructure. Here, to re-engineer the resulting microstructure, we propose a novel process variant, the differential rotation refill FSSW (DR-refill FSSW). DR-refill FSSW stimulates discontinuous dynamic recrystallization and produces a bimodal microstructure with weakened texture. Therefore, the deformation incompatibility between SZ and thermal-mechanically affected zone is avoided. The welds have 50% higher LSS than that of standard refill FSSW welds, and fail in a different failure mode, i.e., SZ pull-out mode. DR-refill FSSW provides a new and effective strategy for improving the performance of spot welds based on microstructural engineering. (c) 2021 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available