4.7 Article

Groundwater fluoride across the Punjab plains of Pakistan and India: Distribution and underlying mechanisms

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 806, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.151353

Keywords

Groundwater; Fluoride; Geochemistry; Public health

Funding

  1. United States Agency for International Development (USAID) under the Pakistan- U.S. Science and Technology Cooperation Program [NAS 2000006111]
  2. Higher Education Commission (HEC) of Pakistan
  3. USAID under the aegis of PEER Science Award [2-61, NAS 2000003428]
  4. NIEHS [P42 ES010349]
  5. NSF [ICER1414131]

Ask authors/readers for more resources

Chronic exposure to well-water with high concentrations of fluoride has serious health consequences, especially in rural areas of South Asia. A study in the Punjab plains of Pakistan and India found that 9% of wells had elevated levels of fluoride above the WHO guideline. Laboratory analysis and field data suggest a correlation between high fluoride levels and specific water chemistry parameters. The study also indicates that salinization from irrigation may contribute to the high fluoride levels in groundwater.
Chronic exposure from drinking well-water with naturally high concentrations of fluoride (F-) has serious health consequences in several regions across the world including South Asia, where the rural population is particularly dependent on untreated groundwater pumped from private wells. An extensive campaign to test 28,648 wells was conducted across the Punjab plains of Pakistan and India by relying primarily on field kits to document the scale of the problem and shed light on the underlying mechanisms. Groundwater samples were collected from a subset of 712 wells for laboratory analysis of F- and other constituents. A handful of sites showing contrasting levels of F- in groundwater were also drilled to determine if the composition of aquifer sediment differed between these sites. The laboratory data show that the field kits correctly classified 91% of the samples relative to the World Health Organization guideline for drinking water of 1.5 mg/L F-. The kit data indicate that 9% of wells across a region extending from the Indus to the Sutlej rivers were elevated in F- relative to this guideline. Field data indicate an association between the proportion of well-water samples with F- > 1.5 mg/L and electric conductivity (EC) > 1.5 mS/an across six floodplains and six intervening doabs. Low Ca2+ concentrations and elevated bicarbonate (HCO3- > 500 mg/L) and sodium (Na+ > 200 mg/L) in high F- groundwater suggest regulation by fluorite. This could be through either the lack of precipitation or the dissolution of fluorite regulated by the loss of Ca2+ from groundwater due to precipitation of calcite and/or ion exchange with clay minerals. Widespread salinization of Punjab aquifers attributed to irrigation may have contributed to higher F- levels in groundwater of the region. Historical conductivity data suggest salinization has yet to be reversed in spite of changes in water resources management. (C) 2021 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available