4.7 Review

Mechanochemical synthesis of catalysts and reagents for water decontamination: Recent advances and perspective

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 825, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.153992

Keywords

Mechanochemical synthesis; High energy ball milling; Environmental remediation; Catalytic material; Reactive material

Funding

  1. National Key Research and Development Program of China [2018YFC1803100, 2019YFC1805600]

Ask authors/readers for more resources

This paper reviews and discusses mechanochemical methods for synthesizing advanced materials for water remediation, focusing on materials that induce redox reactions in contaminants. The study found that mechanochemical approaches enhance surface reactivity, leading to increased generation of reactive species in water and improved catalytic efficiency and reactivity.
This paper aims to provide insights on mechanochemistry as a green and versatile tool to synthesize advanced materials for water remediation. In particular, mechanochemical methodologies for preparation of reagents and catalysts for the removal of organic pollutants are reviewed and discussed, focusing on those materials that, directly or indirectly, induce redox reactions in the contaminants (i.e., photo-, persulfate-, ozone-, and Fenton-catalysts, as well as redox reagents). Methods reported in the literature include surface reactivity enhancement for single-component materials, as well as multi-component material design to obtain synergistic effects in catalytic efficiency and/or reactivity. It was also amply demonstrated that mechanochemical surface activation or the incorporation of catalytic/reactive components boost the generation of reactive species in water by accelerating charge transfer, increasing superficial active sites, and developing pollutant absorption. Finally, indications for potential future developments in this field are debated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available