4.7 Article

Ecotoxicological and genotoxic effects of dimethyl phthalate (DMP) on Lemna minor L. and Spirodela polyrhiza (L.) Schleid. plants under a short-term laboratory assay

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 806, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.150972

Keywords

Chlorophyll fluorescence; Comet assay; DNA damage; Duckweed; Emerging pollutants; Photosynthesis

Ask authors/readers for more resources

The environmental occurrence of phthalates is concerning for ecosystem and human health. This study investigates the effects of dimethyl phthalate on duckweed plants, revealing that high concentrations of DMP can inhibit growth, reduce pigment content and photosynthetic performance, and induce genotoxic damage in aquatic plants, highlighting the environmental risk associated with this compound.
The environmental occurrence of phthalates (PAE) is of great concern for the ecosystem and human health. Despite of their recognized toxicity on biota, a lack of knowledge is still present about the effects of PAE on plants. In this scenario, the effects of dimethyl phthalate (DMP) on duckweed plants (Lemna minor L. and Spirodela polyrhiza (L.) Schleid.), two model plant species for ecotoxicological and trophic studies, were investigated. Under a 7-day lab assay, morphological (biometric indicators), physiological (pigment content and photosynthetic performance) and molecular (DNA damage) parameters were studied. No effects were observed at growth and physiological level in both plants at 3 and 30 mg/L DMP. On the contrary, at 600 mg/L DMP, a concentration used for plant acute toxicity studies, a remarkable growth inhibition and pigment content and photosynthetic parameters reduction compared to control were observed in both plants species, particularly in Spirodela. Alkaline Comet assay in 24 h-treated plants revealed a genotoxic damage induced by DMP, particularly relevant in Spirodela. These results described for the first time the adverse effects exerted by DMP on aquatic plants, contributing to highlight the environmental risk associated to the presence of this compound in the aquatic ecosystem. (c) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available