4.7 Article

Unraveling metabolic alterations in Chlorella vulgaris cultivated on renewable sugars using time resolved multi-omics

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 800, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.149504

Keywords

Chlorella vulgaris; Mixotrophy; Autotrophy; Heterotrophy; Proteomics; Metabolomics

Funding

  1. Florida Department of Agriculture and Consumer Services (USA) [26100]

Ask authors/readers for more resources

The study reveals that Chlorella vulgaris exhibits better nutrient stress tolerance and redox balancing under mixotrophic conditions, leading to higher biomass and lipid production.
The inherent metabolic versatility of Chlorella vulgaris that enables it to metabolize both inorganic and organic carbon under various trophic modes of cultivation makes it a promising candidate for industrial applications. To shed light on the metabolic flexibility of this microalga, time resolved proteomic and metabolomic studies were conducted in three distinct trophic modes (autotrophic, heterotrophic, mixotrophic) at two growth stages (end of linear growth at 6 days and during nutrient deprivation at 10 days). Sweet sorghum bagasse (SSB) hydrolysate was supplied to the cultivation medium as a renewable source of organic carbon mainly in the form of glucose. Integrated multi-omics data showed improved nitrogen assimilation, re-allocation, and recycling and increased levels of photosystem II (PS II) proteins indicating effective cellular quenching of excess electrons during mixotrophy. As external addition of organic carbon (glucose) to the cultivation medium decreases the cell's dependence on photosynthesis, an upregulation in the mitochondrial electron transport chain was recorded that led to increased cellular energy generation and hence higher growth rates under mixotrophy. Moreover, upregulation of the lipid-packaging proteins caleosin and 14_3_3 domain-containing protein resulted in maximum expression during mixotrophy suggesting a strong correlation between lipid synthesis, stabilization, and assembly. Overall, cells cultivated under mixotrophy showed better nutrient stress tolerance and redox balancing leading to higher biomass and lipid production. The study offers a panoramic view of the microalga's metabolic flexibility and contributes to a deeper understanding of the altered biochemical pathways that can be exploited to enhance algal productivity and commercial potential. (c) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available