4.7 Article

PM2.5 exposure close to marijuana smoking and vaping: A case study in residential indoor and outdoor settings

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 802, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.149897

Keywords

Marijuana; Cannabis; Smoking; Vaping; Aerosol; Exposure

Funding

  1. Tobacco-Related Disease Research Program (TRDRP, Oakland, CA) [28IR-0062]

Ask authors/readers for more resources

The study examined the spatial measurement of marijuana aerosols in a smoker's residential spaces, comparing smoking marijuana vs. vaping, and exploring the effect of distance on exposure levels. Indoor vaping had higher average exposures but decreased more rapidly with distance compared to indoor smoking. Outdoor smoking and vaping significantly reduced exposure levels compared to indoor settings.
We conducted 35 experiments for spatial measurement of marijuana aerosols in a current smoker's residential spaces. Fine particulate matter (PM2.5) concentrations were measured every second at 1, 2, and 3 m horizontal distances from the smoker who performed prescribed 5-min smoking and vaping activities. In each experiment, five SidePak monitors measured PM2.5 concentrations at five different angles facing the front of the smoker, representing the worst-case exposures. We studied the effect of distance from the smoker for two marijuana sources - smoking a marijuana cigarette, or joint, and vaping a liquid-cartridge vaping pen. Experiments were conducted in the family room indoors and in the backyard outdoors where the smoker normally consumes mar-ijuana. Indoor marijuana vaping had higher average exposures (5-min PM2.5) at 1 m distance than indoor marijuana smoking, but the levels from indoor vaping decreased more rapidly with distance (e.g., 77% reduction for vaping versus 33% for smoking from 1 to 2 m). Smoking and vaping in the outdoor environment reduce the average exposures down to <5% of the indoor levels at each distance. Cumulative frequency distributions of the 1-s PM2.5 concentrations revealed the frequencies of exceeding any selected transient peak exposure limit at a given distance. The frequency of exceedance decreased more quickly with distance for vaping than for smoking. Smoking and vaping outdoors made the transient peak exposures close to the source much less frequent than smoking and vaping indoors (e.g., <1% exceeded 1000 mu g/m(3) outdoors versus >20% indoors at 1 m). Plotting the frequency of exceedance versus distance could offer additional guidance for a recommended minimum distance from a marijuana source. (C) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available