4.7 Article

The impact of organ-at-risk contour variations on automatically generated treatment plans for NSCLC

Journal

RADIOTHERAPY AND ONCOLOGY
Volume 163, Issue -, Pages 136-142

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.radonc.2021.08.014

Keywords

Radiotherapy; Automatic contouring; Automatic planning; Delineation inaccuracies; Dosimetric differences; Intra-observer variability

Ask authors/readers for more resources

This study evaluated the dosimetric differences between treatment plans optimized using various organ-at-risk (OAR) contouring methods. The results showed that dose differences arising from automatic contour variations were of a similar magnitude or lower than those from intra-observer contour variability. Recommendations include correcting delineation errors when the heart overlaps with the PTV for Heart D-mean and checking contours if they are close to the PTV for D-max parameters.
Background and purpose: Quality of automatic contouring is generally assessed by comparison with manual delineations, but the effect of contour differences on the resulting dose distribution remains unknown. This study evaluated dosimetric differences between treatment plans optimized using various organ-at-risk (OAR) contouring methods. Materials and methods: OARs of twenty lung cancer patients were manually and automatically contoured, after which user-adjustments were made. For each contour set, an automated treatment plan was generated. The dosimetric effect of intra-observer contour variation and the influence of contour variations on treatment plan evaluation and generation were studied using dose-volume histogram (DVH)parameters for thoracic OARs. Results: Dosimetric effect of intra-observer contour variability was highest for Heart D-max (3.4 +/- 6.8 Gy) and lowest for Lungs-GTV D-mean (0.3 +/- 0.4 Gy). The effect of contour variation on treatment plan evaluation was highest for Heart D-max (6.0 +/- 13.4 Gy) and Esophagus D-max (8.7 +/- 17.2 Gy). Dose differences for the various treatment plans, evaluated on the reference (manual) contour, were on average below 1 Gy/1%. For Heart D-mean, higher dose differences were found for overlap with PTV (median 0.2 Gy, 95% 1.7 Gy) vs. no PTV overlap (median 0 Gy, 95% 0.5 Gy). For D-max-parameters, largest dose difference was found between 0-1 cm distance to PTV (median 1.5 Gy, 95% 4.7 Gy). Conclusion: Dose differences arising from automatic contour variations were of the same magnitude or lower than intra-observer contour variability. For Heart D-mean, we recommend delineation errors to be corrected when the heart overlaps with the PTV. For D-max-parameters, we recommend checking contours if the distance is close to PTV (<5 cm). For the lungs, only obvious large errors need to be adjusted. (C) 2021 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available