4.7 Article

First Clinical Photon-counting Detector CT System: Technical Evaluation

Journal

RADIOLOGY
Volume 303, Issue 1, Pages 130-138

Publisher

RADIOLOGICAL SOC NORTH AMERICA (RSNA)
DOI: 10.1148/radiol.212579

Keywords

-

Funding

  1. National Institutes of Health [R01-EB028590]

Ask authors/readers for more resources

This study assessed the technical performance of a clinical photon-counting detector (PCD) CT system, including noise, spatial resolution, and iodine CT number accuracy. The results showed that the PCD CT system has improved technical performance compared to current CT systems, with better temporal resolution and image quality in cardiac imaging.
Background: The first clinical CT system to use photon-counting detector (PCD) technology has become available for patient care. Purpose: To assess the technical performance of the PCD CT system with use of phantoms and representative participant examinations. Materials and Methods: Institutional review board approval and written informed consent from four participants were obtained. Technical performance of a dual-source PCD CT system was measured for standard and high-spatial-resolution (HR) collimations. Noise power spectrum, modulation transfer function, section sensitivity profile, iodine CT number accuracy in virtual monoenergetic images (VMIs), and iodine concentration accuracy were measured. Four participants were enrolled (between May 2021 and August 2021) in this prospective study and scanned using similar or lower radiation doses as their respective clinical examinations performed on the same day using energy-integrating detector (EID) CT. Image quality and findings from the participants' PCD CT and EID CT examinations were compared. Results: All standard technical performance measures met accreditation and regulatory requirements. Relative to filtered back-projection reconstructions, images from iterative reconstruction had lower noise magnitude but preserved noise power spectrum shape and peak frequency. Maximum in-plane spatial resolutions of 125 and 208 mu m were measured for HR and standard PCD CT scans, respectively. Minimum values for section sensitivity profile full width at half maximum measurements were 0.34 mm (0.2-mm nominal section thickness) and 0.64 mm (0.4-mm nominal section thickness) for HR and standard PCD CT scans, respectively. In a 120-kV standard PCD CT scan of a 40-cm phantom, VMI iodine CT numbers had a mean percentage error of 5.7%, and iodine concentration had root mean squared error of 0.5 mg/cm(3), similar to previously reported values for EID CT. VMIs, iodine maps, and virtual noncontrast images were created for a coronary CT angiogram acquired with 66-msec temporal resolution. Participant PCD CT images showed up to 47% lower noise and/or improved spatial resolution compared with EID CT. Conclusion: Technical performance of clinical photon-counting detector (PCD) CT is improved relative to that of a current stateof-the-art CT system. The dual-source PCD geometry facilitated 66-msec temporal resolution multienergy cardiac imaging. Study participant images illustrated the effect of the improved technical performance. (C) RSNA, 2022

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available