4.7 Article

Hyperpolarized 129Xe MRI and Spectroscopy of Gas-Exchange Abnormalities in Nonspecific Interstitial Pneumonia

Journal

RADIOLOGY
Volume 301, Issue 1, Pages 211-220

Publisher

RADIOLOGICAL SOC NORTH AMERICA (RSNA)
DOI: 10.1148/radiol.2021204149

Keywords

-

Funding

  1. National Institutes of Health [NHLBI R01HL105643, R01HL126771]
  2. RSNA Research Scholar Grant [RSCH1821]
  3. Kaganov Initiative

Ask authors/readers for more resources

Recent studies show antifibrotic drugs used for idiopathic pulmonary fibrosis (IPF) could slow progression in other interstitial lung diseases (ILDs), highlighting the need for tools to assess disease activity across ILDs. 129Xe MRI and spectroscopy provide noninvasive measurements of gas exchange abnormalities in IPF. This study used these techniques to compare gas exchange function in nonspecific interstitial pneumonia (NSIP) participants with healthy controls, finding differences in barrier uptake and red blood cell transfer.
Background Recent studies demonstrate that antifibrotic drugs previously reserved for idiopathic pulmonary fibrosis (IPF) may slow progression in other interstitial lung diseases (ILDs), creating an urgent need for tools that can sensitively assess disease activity, progression, and therapy response across ILDs. Hyperpolarized xenon 129 (129Xe) MRI and spectroscopy have provided noninvasive measurements of regional gas-exchange abnormalities in IPF. Purpose To assess gas exchange function using 129Xe MRI in a group of study participants with nonspecific interstitial pneumonia (NSIP) compared with healthy control participants. Materials and Methods In this prospective study, participants with NSIP and healthy control participants were enrolled between November 2017 and February 2020 and underwent 129Xe MRI and spectroscopy. Quantitative imaging provided three-dimensional maps of ventilation, interstitial barrier uptake, and transfer into the red blood cell (RBC) compartment. Spectroscopy provided parameters of the static RBC and barrier uptake compartments, as well as cardiogenic oscillations in RBC signal amplitude and chemical shift. Differences between NSIP and healthy control participants were assessed using the Wilcoxon rank-sum test. Results Thirty-six participants with NSIP (mean age, 57 years +/- 11 [standard deviation]; 27 women) and 15 healthy control participants (mean age, 39 years +/- 18; two women) were evaluated. Participants with NSIP had no difference in ventilation compared with healthy control participants (median, 4.4% [first quartile, 1.5%; third quartile, 8.7%] vs 6.0% [first quartile, 2.8%; third quartile, 6.9%]; P = .91), but they had a higher barrier uptake (median, 6.2% [first quartile, 1.8%; third quartile, 23.9%] vs 0.53% [first quartile, 0.33%; third quartile, 2.9%]; P = .003) and an increased RBC transfer defect (median, 20.6% [first quartile, 11.6%; third quartile, 27.8%] vs 2.8% [first quartile, 2.3%; third quartile, 4.9%]; P < .001). NSIP participants also had a reduced ratio of RBC-to-barrier peaks (median, 0.24 [first quartile, 0.19; third quartile, 0.31] vs 0.57 [first quartile, 0.52; third quartile, 0.67]; P < .001) and a reduced RBC chemical shift (median, 217.5 ppm [first quartile, 217.0 ppm; third quartile, 218.0 ppm] vs 218.2 ppm [first quartile, 217.9 ppm; third quartile, 218.6 ppm]; P = .001). Conclusion Participants with nonspecific interstitial pneumonia had increased barrier uptake and decreased red blood cell (RBC) transfer compared with healthy controls measured using xenon 129 gas-exchange MRI and reduced RBC-to-barrier ratio and RBC chemical shift measured using spectroscopy. (C) RSNA, 2021

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available