4.8 Article

Shape multistability in flexible tubular crystals through interactions of mobile dislocations

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2115423119

Keywords

elasticity; crystals; topological defects; dislocations

Funding

  1. NSF [ACI-1429783]

Ask authors/readers for more resources

This study investigates the potential of shaping multistability and shape morphing in flexible crystalline membranes using glide mobility of dislocations. The results show that the relative and absolute stability of competing states strongly depend on control parameters, and demonstrate a broad design space for controllable and reconfigurable colloidal tube geometries.
We study avenues to shape multistability and shape morphing in flexible crystalline membranes of cylindrical topology, enabled by glide mobility of dislocations. Using computational modeling, we obtain states of mechanical equilibrium presenting a wide variety of tubular crystal deformation geometries, due to an interplay of effective defect interactions with out-of-tangent-plane deformations that reorient the tube axis. Importantly, this interplay often stabilizes defect configurations quite distinct from those predicted for a two-dimensional crystal confined to the surface of a rigid cylinder. We find that relative and absolute stability of competing states depend strongly on control parameters such as bending rigidity, applied stress, and spontaneous curvature. Using stable dislocation pair arrangements as building blocks, we demonstrate that targeted macroscopic three-dimensional conformations of thin crystalline tubes can be programmed by imposing certain sparse patterns of defects. Our findings reveal a broad design space for controllable and reconfigurable colloidal tube geometries, with potential relevance also to architected carbon nanotubes and microtubules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available