4.8 Article

Convergent evolution of venom gland transcriptomes across Metazoa

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2111392119

Keywords

convergent evolution; evolutionary novelties; gene expression; stress response; venom

Funding

  1. European Union [845674]
  2. Swiss NSF [PP00P3_170664]
  3. Marie Curie Actions (MSCA) [845674] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

Animals have evolved specialized organs and anatomical structures to produce and release potent bioactive molecules, known as venoms, for the purpose of subduing prey or predators. A comparative analysis of venom gland transcriptomes from 20 venomous species reveals a strong convergence in gene expression profiles, indicating that different animals have independently adopted similar molecular mechanisms to perform the same function. The study also highlights the presence of stress response mechanisms in venom glands to cope with toxin production, as well as regulatory networks for epithelial development and maintenance.
Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a mixture of potent bioactive molecules to subdue prey or predators-venom. This makes it one of the most widespread, convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed a comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland-specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turn, activates regulatory networks for epithelial development, cell turnover, and maintenance, which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents a first step toward an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available