4.4 Article

Fault severity classification of ball bearing using SinGAN and deep convolutional neural network

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/09544062211043132

Keywords

Fault severity classification; SinGAN; data augmentation; deep convolutional neural network; spectrograms

Ask authors/readers for more resources

Condition monitoring and diagnosis of bearings are crucial for the safety of rotating machines, and selecting suitable signal processing techniques for feature vector construction is a challenge. By utilizing deep learning algorithms and data augmentation techniques, the proposed method can significantly improve the accuracy of fault severity detection.
Condition monitoring and diagnosis of a bearing are very important for any rotating machine as it governs the safety while the machine is in operating condition. To construct a feature vector selection of suitable signal processing techniques is a challenge for vibration-based condition monitoring techniques. In the methodology proposed, Short Time Fourier Transform (STFT), Walsh Hadamard Transform (WHT) and Variable Mode Decomposition (VMD) are used to generate 2-D time-frequency spectrograms from the various fault conditions of bearing. When Deep learning techniques apply for fault diagnosis, a large amount of dataset is required for training of machine learning model. To overcome this issue single image Generative Adversarial Network (SinGAN) as a data augmentation technique, utilized for generating additional 2-D time-frequency spectrograms from various fault conditions of ball bearing. To detect fault severity, four deep learning algorithms, ResNet 34, ResNet50, VGG16, and MobileNetV2 are used as a classifier. Experiments are conducted on a rolling bearing dataset provided by the bearing data center of Case Western Reserve University (CWRU) for validating the utility of methodology proposed. Results show that the proposed methodology enables to detect fault severity level with high classification accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available