4.7 Article

Vanadium(V) Complexes with Substituted 1,5-bis(2-hydroxybenzaldehyde)carbohydrazones and Their Use As Catalyst Precursors in Oxidation of Cyclohexane

Journal

INORGANIC CHEMISTRY
Volume 55, Issue 18, Pages 9187-9203

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.6b01011

Keywords

-

Funding

  1. Fundacao para a Ciencia e a Tecnologia (FCT), Portugal [SFRH/BD/52371/2013]
  2. Slovak Grant Agency VEGA [1/0598/16, 1/0307/14]
  3. Slovak Research and Development Agency [APVV-15-0053, APVV-15-0079]
  4. European Region Development Funds [26230120002]
  5. European Regional Development Fund, Sectoral Operational Programme Increase of Economic Competitiveness, Priority Axis 2 [SOP IEC-A2-O2.1.2-2009-2, 570, COD SMIS-CSNR: 12473, 129/2010-POLISILMET]
  6. [PTDC/QEQ-ERQ/1648/2014]
  7. [PTDC/QEQ-QIN/3967/2014]
  8. [UID/QUI/00100/2013]

Ask authors/readers for more resources

Six dinuclear vanadium(V) complexes have been synthesized: NH4[(VO2)(2)((LH)-L-H)] (NH4[1]), NH4[(VO2)(2)((LH)-L-tBu)] (NH4[2]), NH4[(VO2)(2)((LH)-L-Cl)] (NH4[3]), [(VO2)(2)(VO) ((LH)-L-H) (CH3O)] (4), [(VO2) (VO) (t-BuLH) (C2H5O)] (5), and [ (VO2) (VO) (Cl-LH) (CH3O)(CH3OH/H2O)] (6) (where (LH4)-L-H = 1,5-bis(2-hydroxybenzaldehyde)carb ohydrazon e, t-BuLH4 = 1,5-bis(3,5-di-tert-butyl-2-hydroxybenzaldehyde) carbohydrazone, and (LH4)-L-cl = 1,5-bis(3,5-dichloro-2-hydroxybenzaldehyde)carbohydrazone). The structures of NH4[1] and 4-6 have been determined by X-ray diffraction (XRD) analysis. In all complexes, the triply deprotonated ligand accommodates two V ions, using two different binding sites ONN and ONO separated by a diazine unit -N-N-. In two pockets of NH4[1], two identical VO2+ entities are present, whereas, in those of 4-6, two different VO2+ and VO3+ are bound. The highest oxidation state of V ions was corroborated by X-ray data, indicating the presence of alkoxido ligand bound to VO3+ in 4-6, charge density measurements on 4, magnetic susceptibility, NMR spectroscopy, spectroelectrochemistry, and density functional theory (DFT) calculations. All four complexes characterized by XRD form dimeric associates in the solid state, which, however, do not remain intact in solution. Compounds NH4[1], NH4[2], and 4-6 were applied as alternative selective homogeneous catalysts for the industrially significant oxidation of cyclohexane to cyclohexanol and cyclohexanone. The peroxidative (with tert-butyl hydroperoxide, TBHP) oxidation of cyclohexane was performed under solvent -free and additive -free conditions and under low-power microwave (MW) irradiation. Cyclohexanol and cyclohexanone were the only products obtained (high selectivity), after 1.5 h of MW irradiation. Theoretical calculations suggest a key mechanistic role played by the carbohydrazone ligand, which can undergo reduction, instead of the metal itself, to form an active reduced form of the catalyst.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available