4.6 Article

Epigenetic clock analysis and increased plasminogen activator inhibitor-1 in high-functioning autism spectrum disorder

Journal

PLOS ONE
Volume 17, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0263478

Keywords

-

Funding

  1. JSPS (Japan Society for the Promotion of Science) KAKENHI [18K15483, 21K07520, 17H04249, 21H02852]

Ask authors/readers for more resources

This study found no epigenetic age acceleration in the blood of individuals with ASD. However, it provided novel evidence of increased plasma PAI-1 levels in individuals with high-functioning ASD.
Background Autism spectrum disorder (ASD) is characterized by impaired social communication and behavioral problems. An increased risk of premature mortality has been observed in individuals with ASD. Therefore, we hypothesized that biological aging is accelerated in individuals with ASD. Recently, several studies have established genome-wide DNA methylation (DNAm) profiles as 'epigenetic clocks' that can estimate biological aging. In addition, ASD has been associated with differential DNAm patterns. Methods We used two independent datasets from blood samples consisting of adult patients with high-functioning ASD and controls: the 1st cohort (38 ASD cases and 31 controls) and the 2nd cohort (6 ASD cases and 10 controls). We explored well-studied epigenetic clocks such as HorvathAge, HannumAge, SkinBloodAge, PhenoAge, GrimAge, and DNAm-based telomere length (DNAmTL). In addition, we investigated seven DNAm-based age-related plasma proteins, including plasminogen activator inhibitor-1 (PAI-1), and smoking status, which are the components of GrimAge. Results Compared to controls, individuals with ASD in the 1st cohort, but not in the 2nd cohort, exhibited a trend for increased GrimAge acceleration and a significant increase of PAI-1 levels. A meta-analysis showed significantly increased PAI-1 levels in individuals with ASD compared to controls. Conclusion Our findings suggest there is no epigenetic age acceleration in the blood of individuals with ASD. However, this study provides novel evidence regarding increased plasma PAI-1 levels in individuals with high-functioning ASD. These findings suggest PAI-1 may be a biomarker for high-functioning ASD, however, larger studies based on epigenetic clocks and PAI-1 will be necessary to confirm these findings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available