4.6 Review

A non-lethal method for studying scorpion venom gland transcriptomes, with a review of potentially suitable taxa to which it can be applied

Journal

PLOS ONE
Volume 16, Issue 11, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0258712

Keywords

-

Funding

  1. FEDER funds
  2. FCT - Foundation for Science and Technology [FCT-PTDC/BIA-EVF/2687/2012, FCOMP-01-0124FEDER-028340]
  3. FCT - Fundacao para a Ciencia e a Tecnologia, I.P. [DL57/2016/CP1440/CT0009]
  4. Netherlands Organization for Scientific Research (NWO) [nr. 731.014.206]
  5. Naturalis Biodiversity Center
  6. FCT [PTDC/BIA-EVL/29115/2017, POCI-01-0145-FEDER-029115]
  7. Fundação para a Ciência e a Tecnologia [PTDC/BIA-EVL/29115/2017] Funding Source: FCT

Ask authors/readers for more resources

Scorpion venoms are complex mixtures with potential medical applications. This study presents a novel method for generating scorpion venom gland transcriptomes without sacrificing animals, allowing for in-depth analysis of toxin gene activation patterns over time and evaluation of factors influencing venom composition.
Scorpion venoms are mixtures of proteins, peptides and small molecular compounds with high specificity for ion channels and are therefore considered to be promising candidates in the venoms-to-drugs pipeline. Transcriptomes are important tools for studying the composition and expression of scorpion venom. Unfortunately, studying the venom gland transcriptome traditionally requires sacrificing the animal and therefore is always a single snapshot in time. This paper describes a new way of generating a scorpion venom gland transcriptome without sacrificing the animal, thereby allowing the study of the transcriptome at various time points within a single individual. By comparing these venom-derived transcriptomes to the traditional whole-telson transcriptomes we show that the relative expression levels of the major toxin classes are similar. We further performed a multi-day extraction using our proposed method to show the possibility of doing a multiple time point transcriptome analysis. This allows for the study of patterns of toxin gene activation over time a single individual, and allows assessment of the effects of diet, season and other factors that are known or likely to influence intraindividual venom composition. We discuss the gland characteristics that may allow this method to be successful in scorpions and provide a review of other venomous taxa to which this method may potentially be successfully applied.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available